While muscle contraction in voluntary efforts has been widely investigated, little is known about contraction during neuromuscular electrical stimulation (NMES). The aim of this study was to quantify in vivo muscle architecture of agonist and antagonist muscles at the ankle joint during NMES. Muscle fascicle lengths and pennation angles of the tibialis anterior (TA) and lateral gastrocnemius muscles were assessed via ultrasonography in 8 healthy young males. Measures were obtained during maximal NMES and torque-matched voluntary dorsiflexion contractions. In the TA, NMES induced a shorter fascicle length (67.2±8.1mmvs 74.6±11.4mm; p=0.04) and a greater pennation angle (11.0±2.4° vs 9.3±2.5°; p=0.03) compared with voluntary torque-matched dorsiflexion contractions. Architectural responses in the antagonist lateral gastrocnemius muscle did not significantly differ from rest or between voluntary and electrically induced contractions (p>0.05). Contraction of the antagonist muscle was not a contributing factor to a greater fascicle shortening and increased pennation angle in the TA during NMES. TA architectural response during NMES likely arose from the contribution of muscle synergists during voluntary contractions coupled with a potentially localized contractile activity under the stimulation electrodes during NMES induced contractions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jelekin.2017.07.008DOI Listing

Publication Analysis

Top Keywords

architectural response
8
tibialis anterior
8
neuromuscular electrical
8
electrical stimulation
8
lateral gastrocnemius
8
dorsiflexion contractions
8
nmes induced
8
pennation angle
8
induced contractions
8
nmes
7

Similar Publications

This study explores the optoelectronic and photovoltaic potential of acceptor-π-donor (A-π-D) architectures utilizing CSi quantum dots (CSiQDs) through a combination of density functional theory (DFT) and time-dependent DFT (TDDFT). We examined two key structural configurations: C-C and Si-C conformers. In these systems, CSiQDs serve as the acceptor, CHSF as the π-bridge, and 3 × (CHO) as the donor.

View Article and Find Full Text PDF

Air pollution has become a major challenge to global urban sustainable development, necessitating urgent solutions. Meteorological variables are key determinants of air quality; however, research on their impact across different urban gradients remains limited, and their mechanisms are largely unexplored. This study investigates the dynamic effects of meteorological variables on air quality under varying levels of urbanization using Kaohsiung City, Taiwan, as a case study.

View Article and Find Full Text PDF

Soft Artificial Synapse Electronics.

Research (Wash D C)

January 2025

Department of Electrical and Computer Engineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA.

Soft electronics, known for their bendable, stretchable, and flexible properties, are revolutionizing fields such as biomedical sensing, consumer electronics, and robotics. A primary challenge in this domain is achieving low power consumption, often hampered by the limitations of the conventional von Neumann architecture. In response, the development of soft artificial synapses (SASs) has gained substantial attention.

View Article and Find Full Text PDF

Recent advances in near-field interference detection, inspired by the non-Hermitian coupling-induced directional sensing of Ormia ochracea, have demonstrated the potential of paired semiconductor nanowires for compact light field detection without optical filters. However, practical implementation faces significant challenges including limited active area, architectural scaling constraints, and incomplete characterization of angular and polarization information. Here, we demonstrate a filterless vector light field photodetector, leveraging the angle- and polarization-sensitive near-field interference of non-Hermitian semiconductor nanostructures.

View Article and Find Full Text PDF

The combination of supramolecular self-assemblies and polymer science has resulted in the development of soft materials with diverse properties and applications. In particular, the coordination cages of predefined shape, size, and internal cavity can be utilized intelligently as promising building units for designing responsive and smart soft materials with dual porosity, contributing to the introduction of versatile host-guest chemistry into gels. In this review, we present the recent advancements in gels incorporating coordination cages into their networks, ranging from synthesis strategies to state-of-art applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!