Because reproductive isolation often evolves gradually, differentiating lineages may retain the potential for genetic exchange for prolonged periods, providing an opportunity to quantify and to understand the fundamental role of gene flow during speciation. Here we delimit evolutionary lineages, reconstruct the phylogeny and infer gene flow in newts of the Lissotriton vulgaris species complex based on 74 nuclear markers sampled from 127 localities. We demonstrate that distinct lineages along the speciation continuum in newts exchange nontrivial amounts of genes, affecting their evolutionary trajectories. By integrating a wide array of methods, we delimit nine evolutionary lineages and show that two principal factors have driven their genetic differentiation: time since the last common ancestor determining levels of shared ancestral polymorphism, and shifts in geographic distributions determining the extent of secondary contact. Post-divergence gene flow, indicative of evolutionary non-independence, has been most extensive in Central Europe, while four southern European lineages have acquired the population-genetic hallmarks of independent species (L. graecus, L. kosswigi, L. lantzi, L. schmidtleri). We obtained strong statistical support for widespread mtDNA introgression following secondary contact, previously suggested by discordance between mtDNA phylogeny and morphology. Our study reveals long-term evolutionary persistence of evolutionary lineages that may periodically exchange genes with one another: although some of these lineages may become extinct or fuse, others will acquire complete reproductive isolation and will carry signatures of this complex history in their genomes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ympev.2017.08.003 | DOI Listing |
STAR Protoc
January 2025
Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China. Electronic address:
R2 retrotransposons can be harnessed to insert genes at targeted sites by all-RNA delivery, presenting a new technology for next-generation biotherapeutics. Here, we report a protocol for evaluating the gene integration activity of R2 retrotransposons in mammalian cells. We describe the construction of vectors separately expressing R2 protein and donor, the process of liposome transfection, and flow cytometry.
View Article and Find Full Text PDFFront Microbiol
December 2024
College of Life Sciences, Zaozhuang University, Zaozhuang, China.
Introduction: The conjugative transfer of antibiotic resistance genes (ARGs) mediated by plasmids occurred in different intestinal segments of mice was explored.
Methods: The location of ARG donor bacteria and ARGs was investigated by qPCR, flow cytometry, and small animal imaging. The resistant microbiota was analyzed by gene amplification sequencing.
Ultraviolet (UV)-induced DNA mutations produce genetic drivers of cutaneous melanoma initiation and numerous neoantigens that can trigger anti-tumor immune responses in the host. Consequently, melanoma cells must rapidly evolve to evade immune detection by simultaneously modulating cell-autonomous epigenetic mechanisms and tumor-microenvironment interactions. Angiogenesis has been implicated in this process; although an increase of vasculature initiates the immune response in normal tissue, solid tumors manage to somehow enhance blood flow while preventing immune cell infiltration.
View Article and Find Full Text PDFFront Immunol
January 2025
Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
Background: Squalene epoxidase (SQLE) is a key enzyme in cholesterol biosynthesis and has been shown to negatively affect tumor immunity and is associated with poor outcomes of immunotherapy in various cancers. While most research in this area has focused on the impact of cholesterol on immune functions, the influence of SQLE-mediated squalene metabolism within the tumor immune microenvironment (TIME) remains unexplored.
Methods: We established an immune-competent mouse model (C57BL/6) bearing mouse pancreatic cancer xenografts (KPC cells) with or without stable SQLE-knockdown (SQLE-KD) to evaluate the impact of SQLE-mediated metabolism on pancreatic cancer growth and immune functions.
Background: T cell mediated immunity is reported to play a pathogenic role in cardiac allograft vasculopathy (CAV) in heart transplant (HTx) patients. However, peripheral blood CD8 T cells have not been previously characterized in CAV. This study aimed to identify potentially pathogenic circulating CD8 T cell populations in high grade CAV patients using cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!