Background: Pollen tube growth and fertilization are key processes in angiosperm sexual reproduction. The transmitting tract (TT) of Nicotiana tabacum controls pollen tube growth in part by secreting pistil extensin-like protein III (PELPIII), transmitting-tract-specific (TTS) protein and 120 kDa glycoprotein (120 K) into the stylar extracellular matrix. The three arabinogalactan proteins (AGP) are referred to as stylar AGPs and are the focus of this research. The transmitting tract regulates pollen tube growth, promoting fertilization or rejecting pollen tubes.
Results: The N-terminal domain (NTD) of the stylar AGPs is proline rich and polymorphic among Nicotiana spp. The NTD was predicted to be mainly an intrinsically disordered region (IDR), making it a candidate for protein-protein interactions. The NTD is also the location for the majority of the predicted O-glycosylation sites that were variable among Nicotiana spp. The C-terminal domain (CTD) contains an Ole e 1-like domain, that was predicted to form beta-sheets that are similar in position and length among Nicotiana spp. and among stylar AGPs. The TTS protein had the greatest amino acid and predicted O-glycosylation conservation among Nicotiana spp. relative to the PELPIII and 120 K. The PELPIII, TTS and 120 K genes undergo negative selection, with d/d ratios of 0.59, 0.29 and 0.38 respectively. The d/d ratio for individual species ranged from 0.4 to 0.9 and from 0.1 to 0.8, for PELPIII and TTS genes, respectively. These data indicate that PELPIII and TTS genes are under different selective pressures. A newly discovered AGP gene, Nicotiana tabacum Proline Rich Protein (NtPRP), was found with a similar intron-exon configuration and protein structure resembling other stylar AGPs, particularly TTS.
Conclusions: Further studies of the NtPRP gene are necessary to elucidate its biological role. Due to its high similarity to the TTS gene, NtPRP may be involved in pollen tube guidance and growth. In contrast to TTS, both PELPIII and 120 K genes are more diverse indicating a possible role in speciation or mating preference of Nicotiana spp. We hypothesize that the stylar AGPs and NtPRP share a common origin from a single gene that duplicated and diversified into four distinct genes involved in pollen-style interactions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5553597 | PMC |
http://dx.doi.org/10.1186/s12862-017-1011-2 | DOI Listing |
Plant Cell Rep
January 2025
State Key Laboratory of Crop Genetics and Germplasm Enhancement, Saya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 211800, China.
This study indicated that the CCHC-type zinc finger protein PbrZFP719 involves into self-incompatibility by affecting the levels of reactive oxygen species and cellulose content at the tips of pollen tubes. S-RNase-based self-incompatibility (SI) facilitates cross-pollination and prevents self-pollination, which in turn increases the costs associated with artificial pollination in fruit crops. Self S-RNase exerts its inhibitory effects on pollen tube growth by altering cell structures and components, including reactive oxygen species (ROS) level and cellulose content.
View Article and Find Full Text PDFPlant Physiol
December 2024
Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 00 Prague 6, Czech Republic.
Pollen germination and pollen tube (PT) growth are extremely sensitive to high temperatures. During heat stress (HS), global translation shuts down and favors the maintenance of the essential cellular proteome for cell viability and protection against protein misfolding. Here, we demonstrate that under normal conditions, the Arabidopsis (Arabidopsis thaliana) eukaryotic translation initiation factor subunit eif3m1/eif3m2 double mutant exhibits poor pollen germination, loss of PT integrity and an increased rate of aborted seeds.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China.
Floral organ development, pollen germination and pollen tube growth are crucial for plant sexual reproduction. Phytohormones maintain these processes by regulating the expression and activity of various transcription factors. ICE1, a MYC-like bHLH transcription factor, has been revealed to be involved in cold acclimatisation of Arabidopsis.
View Article and Find Full Text PDFPlant Biol (Stuttg)
January 2025
Laboratório de Ecologia Vegetal, Departamento de Biologia Geral, Universidade Estadual de Montes Claros, Montes Claros, Minas Gerais, Brazil.
The success of pollen-pistil interaction in Mauritia flexuosa (buriti), a palm adapted to the humid ecosystems, 'veredas', within the Cerrado, is influenced by intrinsic and environmental factors. Its supra-annual flowering, dioecy, and adverse climate conditions pose challenges for fertilization, therefore information on floral biology is essential. This study aimed to ascertain stigma receptivity, and elucidate structural, cytochemical, and ultrastructural aspects of the pollen-pistil relationship.
View Article and Find Full Text PDFJ Integr Plant Biol
January 2025
School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.
Heat stress (HS) at the reproductive stage detrimentally affects crop yields and seed quality. However, the molecular mechanisms that protect reproductive processes in plants under HS remain largely unknown. Here, we report that Acetylation Lowers Binding Affinity 3 (ALBA3) is crucial for safeguarding male fertility against HS in Arabidopsis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!