AI Article Synopsis

  • The study investigates the winter survival mechanisms of the perennial grass Agropyron mongolicum through a comprehensive analysis of gene expression across various stages of development.
  • A total of 79.6% of the unigenes were associated with 136 metabolic pathways, highlighting the importance of ABA receptors and specific transcription factors in enhancing cold resistance.
  • The research provides valuable transcriptome data that could improve understanding of overwintering processes in perennial grasses, potentially leading to better strategies for cold tolerance in similar species.

Article Abstract

Background: The mechanism of winter survival for perennials involves multiple levels of gene regulation, especially cold resistance. Agropyron mongolicum is one important perennial grass species, but there is little information regarding its overwintering mechanism. We performed a comprehensive transcriptomics study to evaluate global gene expression profiles regarding the winter survival of Agropyron mongolicum. A genome-wide gene expression analysis involving four different periods was identified. Twenty-eight coexpression modules with distinct patterns were performed for transcriptome profiling. Furthermore, differentially expressed genes (DEGs) and their functional characterization were defined using a genome database such as NT, NR, COG, and KEGG.

Result: A total of 79.6% of the unigenes were characterized to be involved in 136 metabolic pathways. In addition, the expression level of ABA receptor genes, regulation of transcription factors, and a coexpression network analysis were conducted using transcriptome data. We found that ABA receptors regulated downstream gene expression by activating bZIP and NAC transcription factors to improve cold resistance and winter survival.

Conclusion: This study provides comprehensive transcriptome data for the characterization of overwintering-related gene expression profiles in A. mongolicum. Genomics resources can help provide a better understanding of the overwintering mechanism for perennial gramineae species. By analyzing genome-wide expression patterns for the four key stages of tiller bud development, the functional characteristics of the DEGs were identified that participated in various metabolic pathways and have been shown to be strongly associated with cold tolerance. These results can be further exploited to determine the mechanism of overwintering in perennial gramineae species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5553669PMC
http://dx.doi.org/10.1186/s12870-017-1086-3DOI Listing

Publication Analysis

Top Keywords

gene expression
16
overwintering mechanism
12
agropyron mongolicum
12
transcriptome profiling
8
winter survival
8
cold resistance
8
expression profiles
8
metabolic pathways
8
transcription factors
8
transcriptome data
8

Similar Publications

Psychological distress, including anxiety or mood disorders, emanates from the onset of chronic/unpredictable stressful events. Symptoms in the form of maladaptive behaviors are learned and difficult to treat. While the origin of stress-induced disorders seems to be where learning and stress intersect, this relationship and molecular pathways involved remain largely unresolved.

View Article and Find Full Text PDF

DCLRE1B as a novel prognostic biomarker associated with immune infiltration: a pancancer analysis.

Sci Rep

December 2024

Department of Orthopedics, The Second Affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China.

The DNA cross-link repair 1B (DCLRE1B) gene is involved in repairing cross-links between DNA strands, including those associated with Hoyeraal-Hreidarsson syndrome and congenital dyskeratosis. However, its role in tumours is not well understood. DCLRE1B expression profiles were examined in tumour tissues and normal tissues using TCGA, GTEx, and TARGET datasets.

View Article and Find Full Text PDF

Dopamine (DA) plays important roles in various behaviors, including learning and motivation. Recently, THOC5 was identified as an important regulator in the development of dopaminergic neurons. However, how THOC5 is regulated has not been explored.

View Article and Find Full Text PDF

Cuproptosis, a newly identified form of cell death, has drawn increasing attention for its association with various cancers, though its specific role in colorectal cancer (CRC) remains unclear. In this study, transcriptomic and clinical data from CRC patients available in the TCGA database were analyzed to investigate the impact of cuproptosis. Differentially expressed genes linked to cuproptosis were identified using Weighted Gene Co-Expression Network Analysis (WGCNA).

View Article and Find Full Text PDF

Fibrolamellar Hepatocellular Carcinoma (FLC) is a rare liver cancer characterized by a fusion oncokinase of the genes DNAJB1 and PRKACA, the catalytic subunit of protein kinase A (PKA). A few FLC-like tumors have been reported showing other alterations involving PKA. To better understand FLC pathogenesis and the relationships among FLC, FLC-like, and other liver tumors, we performed a massive multi-omics analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!