The effects of spatial heterogeneity in negative biological interactions on individual performance and species diversity have been studied extensively. However, little is known about the respective effects involving positive biological interactions, including the symbiosis between plants and ectomycorrhizal (EM) fungi. Using a greenhouse bioassay, we explored how spatial heterogeneity of natural soil inoculum influences the performance of pine seedlings and composition of their root-associated EM fungi. When the inoculum was homogenously distributed, a single EM fungal taxon dominated the roots of most pine seedlings, reducing the diversity of EM fungi at the treatment level, while substantially improving pine seedling performance. In contrast, clumped inoculum allowed the proliferation of several different EM fungi, increasing the overall EM fungal diversity. The most dominant EM fungal taxon detected in the homogeneous treatment was also a highly beneficial mutualist, implying that the trade-off between competitive ability and mutualistic capacity does not always exist.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ele.12816DOI Listing

Publication Analysis

Top Keywords

ectomycorrhizal fungi
8
fungal diversity
8
spatial heterogeneity
8
biological interactions
8
pine seedlings
8
fungal taxon
8
fungi
5
small-scale spatial
4
spatial variability
4
variability distribution
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!