The olive fruit fly Bactrocera oleae (Diptera: Tephritidae) is the most devastating pest of cultivated olive (Olea europaea L.). Intraspecific variation in plant resistance to B. oleae has been described only at phenotypic level. In this work, we used a transcriptomic approach to study the molecular response to the olive fruit fly in two olive cultivars with contrasting level of susceptibility. Using next-generation pyrosequencing, we first generated a catalogue of more than 80,000 sequences expressed in drupes from approximately 700k reads. The assembled sequences were used to develop a microarray layout with over 60,000 olive-specific probes. The differential gene expression analysis between infested (i.e. with II or III instar larvae) and control drupes indicated a significant intraspecific variation between the more tolerant and susceptible cultivar. Around 2500 genes were differentially regulated in infested drupes of the tolerant variety. The GO annotation of the differentially expressed genes implies that the inducible resistance to the olive fruit fly involves a number of biological functions, cellular processes and metabolic pathways, including those with a known role in defence, oxidative stress responses, cellular structure, hormone signalling, and primary and secondary metabolism. The difference in the induced transcriptional changes between the cultivars suggests a strong genetic role in the olive inducible defence, which can ultimately lead to the discovery of factors associated with a higher level of tolerance to B. oleae.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5552259PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0183050PLOS

Publication Analysis

Top Keywords

olive fruit
16
fruit fly
16
olive
8
response olive
8
fly bactrocera
8
bactrocera oleae
8
tolerant susceptible
8
olive olea
8
olea europaea
8
intraspecific variation
8

Similar Publications

In the last few years, many efforts have been devoted to the recovery and valorization of olive oil by-products because of their potentially high biological value. The olive mill wastewater (OMWW), a dark-green brown colored liquid that mainly consists of fruit vegetation water, is particularly exploited in this regard for its great content in phenolic compounds with strong antioxidant properties. In our previous work, we produced different OMWW fractions enriched in hydroxytyrosol- and hydroxytyrosol/oleuropein (i.

View Article and Find Full Text PDF

Stroke is a leading cause of morbidity and mortality worldwide, and dietary patterns have emerged as a significant modifiable factor in stroke prevention. The Mediterranean diet, characterized by high intake of fruits, vegetables, whole grains, nuts, olive oil, and fish, has been widely recognized for its cardiovascular benefits. However, its specific impact on stroke risk requires further elucidation.

View Article and Find Full Text PDF

Male seminal fluid allocation according to socio-sexual context in the South American fruit fly.

J Comp Physiol A Neuroethol Sens Neural Behav Physiol

January 2025

Laboratorio de Investigaciones Ecoetológicas de Moscas de la Fruta y sus Enemigos Naturales (LIEMEN), División Control Biológico de Plagas, PROIMI-Biotecnología, CONICET, Avenida Belgrano y Pasaje Caseros s/n, San Miguel de Tucumán, Tucumán, 4000, Argentina.

During copulation male insects transfer sperm and seminal fluids, including accessory gland proteins (Acps) to females, produced in the accessory glands (AGs). These Acps influence female behavior and physiology, inhibiting sexual receptivity, promoting ovulation and/or oviposition. The theory of ejaculate allocation postulates that production is costly; therefore, males strategically allocate ejaculates based on perception of sperm competition and quality and availability of females.

View Article and Find Full Text PDF

Optimizing decision-making potential, cost, and environmental impact of traps for monitoring olive fruit fly Bactrocera oleae (Rossi) (Diptera: Tephritidae).

J Econ Entomol

January 2025

Department of Agronomy, María de Maeztu Excellence Unit DAUCO, ETSIAM, University of Cordoba, Campus de Rabanales, Building C4 Celestino Mutis, 14071 Cordoba, Spain.

This work aimed to optimize olive fruit fly (OFF) Bactrocera oleae (Rossi) (Diptera: Tephritidae) monitoring and integrated management, thereby ensuring optimal and less-costly decision-making and timely intervention. Field trials in Andalusia (Spain) were undertaken over 2 years to optimize trap model, color, size, and density for the accurate determination of pest spatial distribution and damage as a function of olive cultivar. McPhail traps and yellow sticky panels outperformed the other 4 models with respect to the number of OFF captured.

View Article and Find Full Text PDF

species constitute the most common cause of fungal infections in humans; the emergence of resistance and biofilm formation by species further threaten the limited availability of antifungal agents. Over the past decade, . has caused significant outbreaks worldwide and has emerged as a human pathogenic fungus that causes diseases ranging from superficial to life-threatening disseminated infections.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!