Quantifying Remote Heating from Propagating Surface Plasmon Polaritons.

Nano Lett

Department of Physics and Astronomy, ‡Department of Electrical and Computer Engineering, and §Department of Materials Science and NanoEngineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States.

Published: September 2017

AI Article Synopsis

  • A new method is introduced to electrically detect heating caused by surface plasmon polaritons (SPPs) through the use of gold "bow tie" nanodevices with lithographically defined gratings.
  • The coupling of SPPs with a continuous laser beams enables energy transfer to a nanowire constriction, where localized heating affects the device conductance, influenced by both the thermal diffusion from the grating and plasmon dissipation at the constriction.
  • The research shows that using SPPs leads to a temperature rise in the constriction that's 60 times smaller than direct laser illumination, paving the way for remote nanostructure excitation in various measurements, including surface-enhanced Raman spectroscopy.

Article Abstract

We report a method to electrically detect heating from excitation of propagating surface plasmon polaritons (SPP). The coupling between SPP and a continuous wave laser beam is realized through lithographically defined gratings in the electrodes of thin film gold "bow tie" nanodevices. The propagating SPPs allow remote coupling of optical energy into a nanowire constriction. Heating of the constriction is detectable through changes in the device conductance and contains contributions from both thermal diffusion of heat generated at the grating and heat generated locally at the constriction by plasmon dissipation. We quantify these contributions through computational modeling and demonstrate that the propagation of SPPs provides the dominant contribution. Coupling optical energy into the constriction via propagating SPPs in this geometry produces an inferred temperature rise of the constriction a factor of 60 smaller than would take place if optical energy were introduced via directly illuminating the constriction. The grating approach provides a path for remote excitation of nanoconstrictions using SPPs for measurements that usually require direct laser illumination, such as surface-enhanced Raman spectroscopy.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.7b02524DOI Listing

Publication Analysis

Top Keywords

optical energy
12
propagating surface
8
surface plasmon
8
plasmon polaritons
8
propagating spps
8
coupling optical
8
heat generated
8
constriction
6
quantifying remote
4
remote heating
4

Similar Publications

αβT cells protect vertebrates against many diseases, optimizing surveillance using mechanical force to distinguish between pathophysiologic cellular alterations and normal self-constituents. The multi-subunit αβT-cell receptor (TCR) operates outside of thermal equilibrium, harvesting energy via physical forces generated by T-cell motility and actin-myosin machinery. When a peptide-bound major histocompatibility complex molecule (pMHC) on an antigen presenting cell is ligated, the αβTCR on the T cell leverages force to form a catch bond, prolonging bond lifetime, and enhancing antigen discrimination.

View Article and Find Full Text PDF

A theoretical comparison of different third component content in ternary organic solar cells.

Phys Chem Chem Phys

January 2025

School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-functional Materials and Chemistry, Changchun, 130022, China.

Ternary solar cells have been rapidly developed in the realm of organic solar cells (OSCs). The incorporation of a third component into a cell results in a complicated active layer morphology, and the relation of this morphology to power conversion efficiency remains elusive. In this work, two ternary active layers, B1:Y7 (10 wt%):BO-4Cl and B1:Y7 (50 wt%):BO-4Cl are constructed, and the reasons for the differences in PCE caused by varying the Y7 content are investigated using theoretical calculations.

View Article and Find Full Text PDF

Herein, we propose a new GaN/MoSiP van der Waals (vdWs) heterostructure constructed by vertically stacking GaN and MoSiP monolayers. Its electronic, optical, and photocatalytic properties are explored DFT++BSE calculations. The calculated binding energy and phonon spectrum demonstrated the material's high stabilities.

View Article and Find Full Text PDF

Background: Medical simulation is relevant for training medical personnel in the delivery of medical and trauma care, with benefits including quantitative evaluation and increased patient safety through reduced need to train on patients.

Methods: This paper presents a prototype medical simulator focusing on ocular and craniofacial trauma (OCF), for training in management of facial and upper airway injuries. It consists of a physical, electromechanical representation of head and neck structures, including the mandible, maxillary region, neck, orbit and peri-orbital regions to replicate different craniofacial traumas.

View Article and Find Full Text PDF

Highly Efficient Photocatalytic HO Production under Ambient Conditions via Defective InS Nanosheets.

Langmuir

January 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.

Oxygen and water generating hydrogen peroxide (HO) by optical drive is an extremely promising pathway, and the large amount of oxygen in air and natural sunlight illumination are excellent catalytic conditions. However, the separation efficiency of photogenerated electron-hole pairs greatly limits the photocatalytic efficiency, especially in the absence of sacrificial agents. Here, we report an InS nanosheet with an S vacancy (S-InS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!