To overcome the limitations associated with antibody-based sensors, we describe a proof-of-concept of an aptamer-based sandwich assay for detection of lactate dehydrogenase, an antigen associated with malaria. We show a detection limit of Plasmodium falciparum lactate dehydrogenase and Plasmodium vivax lactate dehydrogenase of 0.5 fmole in buffer, comparable to an antibody-based assay, using a magnetic particle-aptamer construct for capture and a quantum dot-aptamer construct for detection. We then demonstrate a detection limit of 10 amole (50-fold amplification) using oligonucleotide-functionalized gold nanoparticles to allow the conjugation of multiple quantum dots for each target antigen.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.bioconjchem.7b00328 | DOI Listing |
Cancers (Basel)
December 2024
Division of Medical Oncology, Department of Internal Medicine, Medical Faculty, Ege University, 35100 Izmir, Turkey.
Although immune checkpoint inhibitors (ICIs) have significantly improved cancer treatment, a substantial proportion of patients do not benefit from these therapies, revealing the crucial need to identify reliable biomarkers. Inflammatory markers, such as the neutrophil-to-lymphocyte ratio (NLR), systemic immune-inflammation index (SII), pan-immune inflammation value (PIV), systemic inflammation response index (SIRI), lactate dehydrogenase (LDH), and C-reactive protein (CRP), may provide insights into treatment outcomes. : This study aimed to evaluate the prognostic value of multiple inflammatory markers in patients with cancer receiving ICI-based therapies.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
Neutrophil extracellular traps (NETs) formation is a key process in inflammatory diseases like gout, but the underlying molecular mechanisms remain incompletely understood. This study aimed to establish a model to examine the formation of NETs induced by monosodium urate (MSU) and phorbol 12-myristate 13-acetate (PMA) and to elucidate their molecular pathways. Laser confocal microscopy was used to visualize NET formation, while flow cytometry was employed to detect reactive oxygen species (ROS) production.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City 32897, Egypt.
Cancer cells undergo metabolic rewiring to support rapid proliferation and survival in challenging environments. Glutamine is a preferred resource for cancer metabolism, as it provides both carbon and nitrogen for cellular biogenesis. Recent studies suggest the potential anticancer activity of amino acid analogs.
View Article and Find Full Text PDFSci Rep
January 2025
Discovery3 Team, Department of Research and Early Development, GC Biopharma, 93, Ihyeon-ro 30Beon-gil, Giheung-gu, Yongin-si, Gyeonggi-do, South Korea.
Immune-mediated thrombotic thrombocytopenic purpura (iTTP) is a rare and life-threatening blood disorder characterized by the formation of blood clots in small blood vessels. It is caused by antibodies targeting the A disintegrin and metalloprotease with thrombospondin type 1 repeats, member 13 (ADAMTS13), which plays a role in cleaving von Willebrand factor. Most patients with iTTP have autoantibodies against specific domains of the ADAMTS13 protein, particularly the cysteine-rich and spacer domains.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602.
is a dominant member of the human gut microbiome and produces short-chain fatty acids (SCFAs). These promote immune system function and inhibit inflammation, making this microbe important for human health. Lactate is a primary source of gut SCFAs but its utilization by has not been explored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!