Groundwater quality and quantity is of extreme importance as it is a source of drinking water in the United States. One major concern has emerged due to the possible contamination of groundwater from unconventional oil and natural gas extraction activities. Recent studies have been performed to understand if these activities are causing groundwater contamination, particularly with respect to exogenous hydrocarbons and volatile organic compounds. The impact of contaminants on microbial ecology is an area to be explored as alternatives for water treatment are necessary. In this work, we identified cultivable organic-degrading bacteria in groundwater in close proximity to unconventional natural gas extraction. and were identified using matrix-assisted laser desorption/ionization-time-of-flight-mass spectrometry (MALDI-TOF MS), which proved to be a simple, fast, and reliable method. Additionally, the potential use of the identified bacteria in water and/or wastewater bioremediation was studied by determining the ability of these microorganisms to degrade toluene and chloroform. In fact, these bacteria can be potentially applied for in situ bioremediation of contaminated water and wastewater treatment, as they were able to degrade both compounds.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5620638PMC
http://dx.doi.org/10.3390/microorganisms5030047DOI Listing

Publication Analysis

Top Keywords

natural gas
12
gas extraction
12
cultivable organic-degrading
8
organic-degrading bacteria
8
groundwater unconventional
8
unconventional natural
8
groundwater
5
maldi-tof identification
4
identification cultivable
4
bacteria
4

Similar Publications

A novel fluorescence sensing nanoplatform (CDs/AuNCs@ZIF-8) encapsulating carbon dots (CDs) and gold nanoclusters (AuNCs) within a zeolitic imidazolate framework-8 (ZIF-8) was developed for ratiometric detection of formaldehyde (FA) in the medium of hydroxylamine hydrochloride (NHOH·HCl). The nanoplatform exhibited pink fluorescence due to the aggregation-induced emission (AIE) effect of AuNCs and the internal filtration effect (IFE) between AuNCs and CDs. Upon reaction between NHOH·HCl and FA, a Schiff base formed via aldehyde-diamine condensation, releasing hydrochloric acid.

View Article and Find Full Text PDF

Addressing methane emissions across the liquefied natural gas (LNG) supply chain is key to reducing climate impacts of LNG. Actions to address methane emissions have emphasized the importance of the use of measurement-informed emissions inventories given the systematic underestimation in official greenhouse gas (GHG) emission inventories. Despite significant progress in field measurements of GHG emissions across the natural gas supply chain, no detailed measurements at US liquefaction terminals are publicly available.

View Article and Find Full Text PDF

This study investigates the formation of carbon dioxide clathrate hydrates under conditions simulating interstellar environments, a process of significant astrophysical and industrial relevance. Clathrate hydrates, where gas molecules are trapped within water ice cages, play an essential role in both carbon sequestration strategies and understanding of the behavior of ices in space. We employed a combination of Fourier Transform Infrared (FTIR) spectroscopy, mass spectrometry, temperature-programmed desorption (TPD), and Density Functional Theory (DFT) calculations to explore thin films of HO:CO ice mixtures with varying CO concentrations (5-75%) prepared by vapor deposition at temperatures ranging between 11 and 180 K.

View Article and Find Full Text PDF

For optimizing the drilling efficiency, nanoparticles (NPs) specifically nanometal oxides have been used in water-based drilling fluids (WBDF). Nano metal oxides improve the rheological and filtration characteristics of the WBDF. However, dispersion instability among pristine nano metals shrinks the performance of the nanometal oxides due to high surface energy.

View Article and Find Full Text PDF

Background: To align with climate goals, greenhouse gas (GHG) emissions from agriculture must be reduced significantly. Cultivated peatlands are an important source of such emissions. One proposed measure is to convert arable fields on peatlands to grassland, as the Intergovernmental Panel on Climate Change (IPCC) default emission factors (EF) for organic soils are lower from grasslands.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!