To what degree does spatial attention for one task spread to all stimuli in the attended region, regardless of task relevance? Most models imply that spatial attention acts through a unitary priority map in a task-general manner. We show that implicit learning, unlike endogenous spatial cuing, can bias spatial attention within one task without biasing attention to a spatially overlapping secondary task. Participants completed a visual search task superimposed on a background containing scenes, which they were told to encode for a later memory task. Experiments 1 and 2 used explicit instructions to bias spatial attention to one region for visual search; Experiment 3 used location probability cuing to implicitly bias spatial attention. In location probability cuing, a target appeared in one region more than others despite participants not being told of this. In all experiments, search performance was better in the cued region than in uncued regions. However, scene memory was better in the cued region only following endogenous guidance, not after implicit biasing of attention. These data support a dual-system view of top-down attention that dissociates goal-driven and implicitly learned attention. Goal-driven attention is task general, amplifying processing of a cued region across tasks, whereas implicit statistical learning is task-specific. (PsycINFO Database Record

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5809231PMC
http://dx.doi.org/10.1037/xhp0000457DOI Listing

Publication Analysis

Top Keywords

spatial attention
20
attention
12
attention task
12
bias spatial
12
cued region
12
goal-driven attention
8
implicitly learned
8
learned attention
8
biasing attention
8
visual search
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!