New bioluminescent coelenterazine derivatives with various C-6 substitutions.

Org Biomol Chem

Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, China.

Published: August 2017

A series of new coelenterazine analogs with varying substituents at the C-6 position of the imidazopyrazinone core have been designed and synthesized for the extension of bioluminescence substrates. Some of them display excellent bioluminescence properties compared to DeepBlueC™ or native coelenterazine with both in vitro and in vivo biological evaluations, thus placing these derivatives among the most ideal substrates for Renilla bioluminescence applications.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7ob01554bDOI Listing

Publication Analysis

Top Keywords

bioluminescent coelenterazine
4
coelenterazine derivatives
4
derivatives c-6
4
c-6 substitutions
4
substitutions series
4
series coelenterazine
4
coelenterazine analogs
4
analogs varying
4
varying substituents
4
substituents c-6
4

Similar Publications

The bioluminescent European brittle star Amphiura filiformis produces blue light at the arm-spine level thanks to a biochemical reaction involving coelenterazine as substrate and a Renilla-like luciferase as an enzyme. This echinoderm light production depends on a trophic acquisition of the coelenterazine substrate. Without an exogenous supply of coelenterazine, this species loses its luminous capabilities.

View Article and Find Full Text PDF

Bioluminescence Resonance Energy Transfer Sensor with Tunable Conjugation Efficiency for Highly Sensitive Detection of Superoxide Anion in Tumors.

ACS Appl Bio Mater

December 2024

Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen 361005, P. R. China.

Superoxide anion (O) is a highly reactive oxygen species (ROS) within tumor cells, and its abnormal concentrations can lead to various diseases such as cancer, inflammation, and premature aging disorders. Here, we obtained a series of bioluminescence resonance energy transfer (BRET) systems that can be used for sensitive and specific detection of O by varying the type and reaction time of quantum dots (QDs) and combining them with different concentrations of recombinant aequorin. Among them, the recombinant aequorin-conjugated CdTe/CdSe QDs had the highest conjugation efficiency as the Aeq-QD BRET sensor, which has a remarkable energy transfer efficiency of 35.

View Article and Find Full Text PDF

Here, we describe (1) the AlphaFold-based structural modeling approach to identify amino acids of the photoprotein berovin that are crucial for coelenterazine binding, and (2) the production and characterization of berovin mutants with substitutions of the identified residues regarding their effects on the ability to form an active photoprotein under physiological conditions and stability to light irradiation. The combination of mutations K90M, N107S, and W103F is demonstrated to cause a shift of optimal conditions for the conversion of apo-berovin into active photoprotein towards near-neutral pH and low ionic strength, and to reduce the sensitivity of active berovin to light. According to the berovin spatial structure model, these residues are found in close proximity to the 6-(-hydroxy)-phenyl group of the coelenterazine peroxyanion.

View Article and Find Full Text PDF

luciferase (Luc) is the preeminent secreted luciferase widely used in cell-based reporter assays. By employing sequence-guided mutagenesis informed by alignments of diverse copepod luciferase sequences, we identified key amino acids that significantly enhance bioluminescence (BL) intensity. Among the mutated proteins expressed in bacteria, five individual mutations (M60L, K88Q, F89Y, I90L, or S103T) independently increased BL intensity by 1.

View Article and Find Full Text PDF

Determining why convergent traits use distinct versus shared genetic components is crucial for understanding how evolutionary processes generate and sustain biodiversity. However, the factors dictating the genetic underpinnings of convergent traits remain incompletely understood. Here, we use heterologous protein expression, biochemical assays, and phylogenetic analyses to confirm the origin of a luciferase gene from haloalkane dehalogenases in the brittle star .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!