It is shown that the rotational diffusivity of nanoparticles in polymer solutions spanning the dilute to semi-dilute regimes deviates from the predictions of the Stokes-Einstein (SE) relationship, and that this deviation can be explained by the existence of a polymer depletion layer with the viscosity of the bath solvent. The measurements of the rotational diffusion coefficient of poly(ethylene glycol) (PEG) grafted magnetic nanoparticles in PEG solutions spanning the dilute to semi-dilute regimes and a wide range of polymer molecular weights were obtained from the dynamic magnetic response of the nanoparticles to alternating magnetic fields. Experimental rotational diffusion coefficient values were compared with those predicted by the SE relation using the macroscopic viscosity of the polymer solutions and the hydrodynamic radius of the nanoparticles. Deviations between experimental and SE rotational diffusivity values were observed for nanoparticles in polymer solutions where the radius of gyration of the polymer exceeded the hydrodynamic radius of the particles. A simple model for the rotational hydrodynamic drag on a particle surrounded by a polymer depletion layer was found to describe the experimental rotational diffusivities well, suggesting that the observed phenomenon arises due to the formation of a polymer depletion layer around the nanoparticles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c7nr01603d | DOI Listing |
Green Chem
January 2025
Department of Materials and Environmental Chemistry, Stockholm University SE-106 91 Stockholm Sweden
Lignin has emerged as a sustainable alternative to fossil-based polymers in advanced materials such as photonics. However, current methods for preparing photonic lignin materials are limited by non-benign organic solvents and low production yields. In this work, we present a highly efficient process that enables the production of photonic glasses with yields ranging from 48% to 72%, depending on the size of the lignin nanoparticles obtained from herbaceous soda lignin, softwood kraft lignin, and hardwood organosolv lignin.
View Article and Find Full Text PDFACS Omega
January 2025
School of Chemical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India.
This work explores the enhancement of EMI shielding efficiency of polyurethane (PU) foam by loading multiwall carbon nanotube (MWCNTs)-decorated hollow glass microspheres (HGMs). MWCNT was coated onto the HGM surface by a simple solution casting technique. The coated HGM particles were loaded in PU foams, resulting in an even dispersion of MWCNT in the foam struts, thereby forming an interconnected conductive network in the polymer matrix.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Architecture and Built Environment, University of Nottingham, NG7 2RD, UK.
The demand for engineered composites particularly fiberglass reinforced polymers (FRP) is gaining momentum. The manufacturing of virgin input-resins for these composites involves the use of certain materials which poses serious environmental implication. This study has exclusively applied and investigated the Grey Forecasting model for management of FRP waste in developing countries to minimize the virgin inputs and likely environmental impacts.
View Article and Find Full Text PDFOncol Res
January 2025
Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia.
Background: Hepatocellular carcinoma (HCC) is a health problem due to multi-drug resistance (MDR). Codelivery of multiple oncotherapy in one cargo as chimeric cancer therapy (CCT) is suggested as a solution for MDR. This study aims to engineer chitosan-coated nanostructure lipid carriers (NLCs) loaded with gefitinib (GF) and simvastatin (SV) as CCT for HCC.
View Article and Find Full Text PDFSmall
January 2025
Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, College of Materials Science and Engineering, Guilin University of Technology, No.12 Jian'gan Rd., Qixing District, Guilin, 541004, China.
Nonconventional Luminescent Materials (NLMs) with distinctive optical properties are garnering significant attention. A key challenge in their practical application lies in precisely controlling their emission behavior, particularly achieving excitation wavelength-independent emission, which is paramount for accurate chemical sensing. In this study, NLMs (Y1, Y2, Y3, and Y4) are synthesized via a click reaction, and it is found that excitation wavelength-dependent emission correlates with molecular cluster formation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!