A specific GABAergic synapse onto oligodendrocyte precursors does not regulate cortical oligodendrogenesis.

Glia

Laboratory of Neurophysiology and New Microscopies, INSERM U1128, Paris, France.

Published: November 2017

In the brain, neurons establish bona fide synapses onto oligodendrocyte precursor cells (OPCs), but the function of these neuron-glia synapses remains unresolved. A leading hypothesis suggests that these synapses regulate OPC proliferation and differentiation. However, a causal link between synaptic activity and OPC cellular dynamics is still missing. In the developing somatosensory cortex, OPCs receive a major type of synapse from GABAergic interneurons that is mediated by postsynaptic γ2-containing GABA receptors. Here we genetically silenced these receptors in OPCs during the critical period of cortical oligodendrogenesis. We found that the inactivation of γ2-mediated synapses does not impact OPC proliferation and differentiation or the propensity of OPCs to myelinate their presynaptic interneurons. However, this inactivation causes a progressive and specific depletion of the OPC pool that lacks γ2-mediated synaptic activity without affecting the oligodendrocyte production. Our results show that, during cortical development, the γ2-mediated interneuron-to-OPC synapses do not play a role in oligodendrogenesis and suggest that these synapses finely tune OPC self-maintenance capacity. They also open the interesting possibility that a particular synaptic signaling onto OPCs plays a specific role in OPC function according to the neurotransmitter released, the identity of presynaptic neurons or the postsynaptic receptors involved.

Download full-text PDF

Source
http://dx.doi.org/10.1002/glia.23197DOI Listing

Publication Analysis

Top Keywords

cortical oligodendrogenesis
8
opc proliferation
8
proliferation differentiation
8
synaptic activity
8
synapses
6
opc
6
opcs
5
specific gabaergic
4
gabaergic synapse
4
synapse oligodendrocyte
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!