Atom probe tomography (APT) data acquired from a CAMECA LEAP 4000 XHR for the CdS/CdTe interface for a non-CdCl treated CdTe solar cell as well as the mass spectrum of an APT data set including a GB in a CdCl-treated CdTe solar cell are presented. Scanning electron microscopy (SEM) data showing the evolution of sample preparation for APT and scanning transmission electron microscopy (STEM) electron beam induced current (EBIC) are also presented. These data show mass spectrometry peak decomposition of Cu and Te within an APT dataset, the CdS/CdTe interface of an untreated CdTe solar cell, preparation of APT needles from the CdS/CdTe interface in superstrate grown CdTe solar cells, and the preparation of a cross-sectional STEM EBIC sample.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5540671PMC
http://dx.doi.org/10.1016/j.dib.2016.03.042DOI Listing

Publication Analysis

Top Keywords

cdte solar
20
cds/cdte interface
12
solar cell
12
mass spectrometry
8
sem data
8
solar cells
8
apt data
8
electron microscopy
8
preparation apt
8
apt
6

Similar Publications

Cd(Se,Te) photovoltaics (PV) are the most widely deployed thin-film solar technology globally, yet continued efficiency improvements are stymied by challenges at the device hole contacts. The inclusion of solution-processed oxide layers such as AlGaO in the contact stack has yielded improved device open-circuit voltages () and fill factors (FF). However, contradictory mechanisms by which these layers improve the device properties have been proposed by the research community.

View Article and Find Full Text PDF

Microelectronic Structure and Doping Nonuniformity of Phosphorus-Doped CdSeTe Solar Cells.

ACS Appl Mater Interfaces

January 2025

National Renewable Energy Laboratory, Golden, Colorado 80401, United States.

Optimizing group-V doping and Se alloying are two main focuses for advancing CdTe photovoltaic technology. We report on nanometer-scale characterizations of microelectronic structures of phosphorus (P)-doped CdSeTe devices using a combination of two atomic force microscopy-based techniques, namely, Kelvin probe force microscopy (KPFM) and scanning spreading resistance microscopy (SSRM). KPFM on device cross-section images distribution of the potential drop across the device.

View Article and Find Full Text PDF

Precise material design and surface engineering play a crucial role in enhancing the performance of optoelectronic devices. These efforts are undertaken to particularly control the optoelectronic properties and regulate charge carrier dynamics at the surface and interface. In this study, we used ultrafast scanning electron microscopy (USEM), which is a powerful and highly sensitive surface tool that provides unique information about the photoactive charge dynamics of material surfaces selectively and spontaneously in real time and space in high spatial and temporal resolution.

View Article and Find Full Text PDF
Article Synopsis
  • Thin-film solar cells offer a more efficient alternative to traditional crystalline silicon cells by utilizing thin semiconductor layers with a direct bandgap.
  • The article discusses a novel design for a double-absorber thin-film solar cell made from CZTS and CZTSSe, optimizing various structural components through numerical simulations.
  • The optimized model achieves impressive performance metrics, including a 26.31% efficiency and utilizes non-toxic materials, positioning CZTS as a viable replacement for conventional thin-film photovoltaic materials like CdTe.
View Article and Find Full Text PDF

Ion migration in semiconductor devices is facilitated by the presence of point defects and has a major influence on electronic and optical properties. It is important to understand and identify ways to mitigate photoinduced and electrically induced defect-mediated ion migration in semiconductors. In this Perspective, we discuss the fundamental mechanisms of defect-mediated ion migration and diffusion as understood through atomistic simulations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!