Programmed death ligand-1 (PD-L1), which is highly expressed in gastric cancers, interacts with programmed death-1 (PD-1) on T cells and is involved in T-cell immune resistance. To increase the therapeutic safety and accuracy of PD-1/PD-L1 blockade, RNA interference through targeted gene delivery was performed in our study. We developed folic acid (FA)- and disulfide (SS)-polyethylene glycol (PEG)-conjugated polyethylenimine (PEI) complexed with superparamagnetic iron oxide FeO nanoparticles (SPIONs) as a siRNA-delivery system for PD-L1 knockdown. The characterization, binding ability, cytotoxicity, transfection efficiency, and cellular internalization of the polyplex were determined. At nitrogen:phosphate (N:P) ratios of 10 or above, the FA-PEG-SS-PEI-SPIONs bound to PD-L1 siRNA to form a polyplex with a diameter of approximately 120 nm. Cell-viability assays showed that the polyplex had minimal cytotoxicity at low N:P ratios. The FA-conjugated polyplex showed higher transfection efficiency and cellular internalization in the folate receptor-overexpressing gastric cancer cell line SGC-7901 than a non-FA-conjugated polyplex. Subsequently, we adopted the targeted FA-PEG-SS-PEI-SPION/siRNA polyplexes at an N:P ratio of 10 for function studies. Cellular magnetic resonance imaging (MRI) showed that the polyplex could also act as a -weighted contrast agent for cancer MRI. Furthermore, one of four PD-L1 siRNAs exhibited effective PD-L1 knockdown in PD-L1-overexpressing SGC-7901. To determine the effects of the functionalized polyplex on T-cell function, we established a coculture model of activated T cells and SGC-7901 cells and demonstrated changes in secreted cytokines. Our findings highlight the potential of this class of multifunctional theranostic nanoparticles for effective targeted PD-L1-knockdown therapy and MRI diagnosis in gastric cancers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5536232 | PMC |
http://dx.doi.org/10.2147/IJN.S137245 | DOI Listing |
J Biomed Sci
March 2025
Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing Street, Taipei, 110, Taiwan.
Background: Glioblastoma multiforme (GBM) is an aggressive brain tumor with chemoresistant, immunosuppressive, and invasive properties. Despite standard therapies, including surgery, radiotherapy, and temozolomide (TMZ) chemotherapy, tumors inevitably recur in the peritumoral region. Targeting GBM-mediated immunosuppressive and invasive properties is a promising strategy to improve clinical outcomes.
View Article and Find Full Text PDFACS Nano
March 2025
Center for High Technology Materials, University of New Mexico, Albuquerque, New Mexico 87106, United States.
Superparamagnetic iron-oxide nanoparticles (SPIONs) are promising probes for biomedical imaging, but the heterogeneity of their magnetic properties is difficult to characterize with existing methods. Here, we perform wide-field imaging of the stray magnetic fields produced by hundreds of isolated ∼30 nm SPIONs using a magnetic microscope based on nitrogen-vacancy centers in diamond. By analyzing the SPION magnetic field patterns as a function of the applied magnetic field, we observe substantial field-dependent transverse magnetization components that are typically obscured with ensemble characterization methods.
View Article and Find Full Text PDFJ Am Chem Soc
March 2025
Department of Chemistry, Bar-Ilan University, Ramat Gan 5290002, Israel.
Aqueous colloids with a high concentration of nanoparticles and free of steric stabilizers are prospective soft materials, the engineering of which is still challenging. Herein, we prepared superparamagnetic colloids with very large, up to 1350 g/L concentration of 11 nm nanoparticles via Fe and Fe coprecipitation, water washing, purification using cation-exchange resin, and stabilization with a monolayer of citrate anions (ζ potential of diluted dispersions about -35 mV). XRD, XPS, Mössbauer, and FTIR spectra elucidated the defective reverse spinel structure of magnetite/maghemite (FeO/γ-FeO) with a reduced content of Fe cations.
View Article and Find Full Text PDFNat Commun
March 2025
Chemicobiology and Functional Materials Institute, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, PR China.
Vaccines offer prophylactic treatments against atherosclerosis by eliciting effector T cell and antibody responses, which require effective delivery of antigen and adjuvant to activate dendritic cells (DC). Here we show that individual conjugation of antigen p210 and adjuvant CpG oligodeoxynucleotides onto superparamagnetic iron oxide nanoparticles formulates a nanovaccine cocktail that activates DCs for antigen cross-presentation and induction of co-stimulatory signals, cytokines and CD8 effector/effector memory T cell responses. This nanovaccine modulates the DCs in the draining lymph nodes, activates both CD4 and CD8 T cells, elicits memory responses, and induces both anti-p210 IgM and IgG antibodies to suppress atherosclerosis.
View Article and Find Full Text PDFNanomedicine
February 2025
Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, 143026 Moscow, Russia.
Iron oxide nanoparticles are a promising candidate for the dual-mode MRI contrast agent, however most of them have limited circulation time and predominant negative contrast. We developed citric acid stabilized superparamagnetic maghemite nanoparticles (CA-SPMNs) with size 3.2 ± 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!