Model of rhythmic ball bouncing using a visually controlled neural oscillator.

J Neurophysiol

Laboratoire des Signaux et Systèmes (L2S), CentraleSupélec, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette France.

Published: October 2017

The present paper investigates the sensory-driven modulations of central pattern generator dynamics that can be expected to reproduce human behavior during rhythmic hybrid tasks. We propose a theoretical model of human sensorimotor behavior able to account for the observed data from the ball-bouncing task. The novel control architecture is composed of a Matsuoka neural oscillator coupled with the environment through visual sensory feedback. The architecture's ability to reproduce human-like performance during the ball-bouncing task in the presence of perturbations is quantified by comparison of simulated and recorded trials. The results suggest that human visual control of the task is achieved online. The adaptive behavior is made possible by a parametric and state control of the limit cycle emerging from the interaction of the rhythmic pattern generator, the musculoskeletal system, and the environment. The study demonstrates that a behavioral model based on a neural oscillator controlled by visual information is able to accurately reproduce human modulations in a motor action with respect to sensory information during the rhythmic ball-bouncing task. The model attractor dynamics emerging from the interaction between the neuromusculoskeletal system and the environment met task requirements, environmental constraints, and human behavioral choices without relying on movement planning and explicit internal models of the environment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5646202PMC
http://dx.doi.org/10.1152/jn.00054.2017DOI Listing

Publication Analysis

Top Keywords

neural oscillator
12
ball-bouncing task
12
pattern generator
8
reproduce human
8
emerging interaction
8
system environment
8
human
5
task
5
model
4
model rhythmic
4

Similar Publications

Subthalamic nucleus deep brain stimulation in the beta frequency range boosts cortical beta oscillations and slows down movement.

J Neurosci

January 2025

Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Germany

Recordings from Parkinson's disease (PD) patients typically show strong beta-band oscillations (13-35Hz), which can be modulated by deep brain stimulation (DBS). While high-frequency DBS (>100Hz) ameliorates motor symptoms and reduces beta activity in basal ganglia and motor cortex, the effects of low-frequency DBS (<30Hz) are less clear. Clarifying these effects is relevant for the debate about the role of beta oscillations in motor slowing, which might be causal or epiphenomenal.

View Article and Find Full Text PDF

Supportive but biased: perceptual neural intergroup bias is sensitive to minor reservations about supporting outgroup immigration.

Neuropsychologia

January 2025

Department of Criminology & Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan 5290002, Israel; Department of Neuroscience and Biomedical Engineering, Aalto University, Finland 00076. Electronic address:

While decreasing negative attitudes against outgroups are often reported by individuals themselves, biased behaviour prevails. This gap between words and actions may stem from unobtrusive mental processes that could be uncovered by using neuroimaging in addition to self-reports. In this study we investigated whether adding neuroimaging to a traditional intergroup bias measure could detect intersubject differences in intergroup bias processes in a societal context where opposing discrimination is normative.

View Article and Find Full Text PDF

Memory load influences our preparedness to act on visual representations in working memory without affecting their accessibility.

Prog Neurobiol

January 2025

Institute for Brain and Behavior Amsterdam, Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, the Netherlands. Electronic address:

It is well established that when we hold more content in working memory, we are slower to act upon part of that content when it becomes relevant for behavior. Here, we asked whether this load-related slowing is due to slower access to the sensory representations held in working memory (as predicted by serial working-memory search), or by a reduced preparedness to act upon those sensory representations once accessed. To address this, we designed a visual-motor working-memory task in which participants memorized the orientation of two or four colored bars, of which one was cued for reproduction.

View Article and Find Full Text PDF

Individualized Spectral Features in First-episode and Drug-naïve Major Depressive Disorder: Insights from Periodic and Aperiodic EEG Analysis.

Biol Psychiatry Cogn Neurosci Neuroimaging

January 2025

School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou 511442, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China; Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, China; Department of Nuclear Medicine and Radiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan. Electronic address:

Background: The detection of abnormal brain activity plays an important role in the early diagnosis and treatment of major depressive disorder (MDD). Recent studies have shown that the decomposition of the electroencephalography (EEG) spectrum into periodic and aperiodic components is useful for identifying the drivers of electrophysiologic abnormalities and avoiding individual differences.

Methods: This study aimed to elucidate the pathologic changes in individualized periodic and aperiodic activities and their relationships with the symptoms of MDD.

View Article and Find Full Text PDF

Deciphering Consciousness: The Role of Corticothalamocortical Interactions in General Anesthesia.

Pharmacol Res

January 2025

Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China. Electronic address:

General anesthesia is administered to millions of individuals each year, however, the precise mechanism by which it induces unconsciousness remains unclear. While some theories suggest that anesthesia shares similarities with natural sleep, targeting sleep-promoting areas and inhibiting arousal nuclei, recent research indicates a more complex process. Emerging evidence highlights the critical role of corticothalamocortical circuits, which are involved in higher cognitive functions, in controlling arousal states and modulating transitions between different conscious states during anesthesia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!