Making Oncolytic Virotherapy a Clinical Reality: The European Contribution.

Hum Gene Ther

Department of Oncology, University of Oxford, Oxford, United Kingdom .

Published: November 2017

Oncolytic viruses (OVs) are quickly moving toward the forefront of modern medicines. The reward for the decades of research invested into developing viral platforms that selectively replicate in and lyse tumor cells while sparking anticancer adaptive immunity is presenting in the form of durable therapeutic responses. While this has certainly been a concerted global effort, in this review for the 25th anniversary of the European Society of Gene and Cell Therapy, we focus on the contributions made by European researchers. Research centers across Europe have held central roles in advancing OVs, from the earliest reports of coincidental viral infections leading to antitumor efficacy, to advanced mechanistic studies, and now through Phase I-III trials to imminent regulatory approvals. While challenges still remain, with limitations in preclinical animal models, antiviral immune clearance, and manufacture restrictions enforced by poor viral yields in certain cases, the field has come a very long way in recent years. Thoughtful mechanistic integration of OVs with standard of care strategies and other newly approved therapies should provide potent novel approaches. Combination with immunotherapeutic regimes holds significant promise, and the ability to arm the viral platform with therapeutic proteins for localized expression at the tumor site provides an opportunity for creating highly effective synergistic treatments and brings a new age of targeted cancer therapeutics.

Download full-text PDF

Source
http://dx.doi.org/10.1089/hum.2017.112DOI Listing

Publication Analysis

Top Keywords

making oncolytic
4
oncolytic virotherapy
4
virotherapy clinical
4
clinical reality
4
reality european
4
european contribution
4
contribution oncolytic
4
oncolytic viruses
4
viruses ovs
4
ovs moving
4

Similar Publications

Adenoviral Vectors for Gene Therapy of Hereditary Diseases.

Biology (Basel)

December 2024

Laboratory of Genome Editing, Research Centre for Medical Genetics, Moskvorechye, 1, 115522 Moscow, Russia.

Adenoviral vectors (AdVs) are effective vectors for gene therapy due to their broad tropism, high capacity, and high transduction efficiency, which makes them actively used as oncolytic vectors and for creating vector vaccines. However, despite their numerous advantages, AdVs have not yet found their place in gene therapy for hereditary diseases. This review provides an overview of AdVs, their features, and clinical trials using them for gene replacement therapy in monogenic diseases and analyzes the reasons for the failures of these studies.

View Article and Find Full Text PDF

Background: There has been limited success of cancer immunotherapies in the treatment of ovarian cancer (OvCa) to date, largely due to the immunosuppressive tumour microenvironment (TME). Tumour-associated macrophages (TAMs) are a major component of both the primary tumour and malignant ascites, promoting tumour growth, angiogenesis, metastasis, chemotherapy resistance and immunosuppression. Differential microRNA (miRNA) profiles have been implicated in the plasticity of TAMs.

View Article and Find Full Text PDF

Strategies for Modifying Adenoviral Vectors for Gene Therapy.

Int J Mol Sci

November 2024

Laboratory of Genome Editing, Research Centre for Medical Genetics, Moskvorechye, 1, 115522 Moscow, Russia.

Adenoviral vectors (AdVs) are effective vectors for gene therapy due to their broad tropism, large capacity, and high transduction efficiency, making them widely used as oncolytic vectors and for creating vector-based vaccines. This review also considers the application of adenoviral vectors in oncolytic virotherapy and gene therapy for inherited diseases, analyzing strategies to enhance their efficacy and specificity. However, despite significant progress in this field, the use of adenoviral vectors is limited by their high immunogenicity, low specificity to certain cell types, and limited duration of transgene expression.

View Article and Find Full Text PDF

cGAS/STING in skin melanoma: from molecular mechanisms to therapeutics.

Cell Commun Signal

November 2024

Department of Food Nutrition and Safety, Dalian Medical University, Dalian, 116044, China.

Melanoma, recognized as the most aggressive type of skin cancer, has experienced a notable increase in cases, especially within populations with fair skin. This highly aggressive cancer is largely driven by UV radiation exposure, resulting in the uncontrolled growth and malignant transformation of melanocytes. The cGAS-STING pathway, an immune signaling mechanism responsible for detecting double-stranded DNA in the cytoplasm, is essential for mediating the immune response against melanoma.

View Article and Find Full Text PDF

Pyroptosis, driven by the N-terminal domain of gasdermin proteins (GSDM), promotes antitumor immunity by attracting lymphocytes to the tumor microenvironment (TME). However, current pyroptosis-inducing therapies like drug injections and phototherapy are limited to localized treatments, making them unsuitable for widespread or microscopic metastatic lesions. This study engineered oncolytic M1 viruses (rM1-mGSDME_FL and rM1-mGSDME_NT) to selectively deliver GSDME to tumor cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!