We present an experimental and theoretical study of the breakthrough performance of the flexible metal-organic framework Cu(bpy)(BF) (bpy = 4,4'-bipyridine), termed ELM-11. Pure CO, He, CH, and N gases, as well as binary gas mixtures of those species, were used to perform breakthrough experiments on ELM-11. ELM-11 exhibits a stepped breakthrough curve for CO not seen in rigid adsorbents. By comparing the step heights observed in the experimental breakthrough curves with predictions of the gate pressure obtained from the osmotic framework adsorbed solution theory (OFAST) method, we show that the OFAST method can be used to predict the occurrence and height of the steps observed in the breakthrough curves of flexible metal-organic frameworks. For specific gas mixtures, breakthrough curves on ELM-11 show a "doorstop"-type effect, wherein the observed step heights for CO breakthrough curves are reduced when the gas mixture contains small kinetic diameter gas species such as helium.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.7b02036 | DOI Listing |
Brain Inform
January 2025
Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY, 10032, USA.
Calcium plays an important role in regulating various neuronal activities in human brains. Investigating the dynamics of the calcium level in neurons is essential not just for understanding the pathophysiology of neuropsychiatric disorders but also as a quantitative gauge to evaluate the influence of drugs on neuron activities. Accessing human brain tissue to study neuron activities has historically been challenging due to ethical concerns.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
The discharge of chromium(VI) into the environment is becoming a significant global concern. Despite the existence of numerous techniques for chromium(VI) removal, substantial challenges persist in effectively mitigating this issue. Therefore, this study investigates the feasibility of using low-cost basalt rock as an adsorbent for chromium(VI) removal.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Université de Caen Normandie, ENSICAEN, CNRS, LCS, Laboratoire Catalyse et Spectrochimie, Caen 14000, France.
The urgent need to mitigate carbon emissions has spurred research into small-pore zeolites as cost-effective options for CO capture by solid adsorbents, particularly in postcombustion and biogas separation applications. In this study we investigate levyne (LEV-type) zeolite, a largely unexplored material for CO adsorption, as a novel adsorbent for CO capture and gas separation. Using seed-assisted synthesis approaches and different synthesis conditions, nanosized and micron-sized LEV zeolites were synthesized and characterized in terms of synthesis pathways, morphology, crystal size, and chemical composition.
View Article and Find Full Text PDFNat Commun
January 2025
Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
Separation of multi-component mixtures in an energy-efficient manner has important practical impact in chemical industry but is highly challenging. Especially, targeted simultaneous removal of multiple impurities to purify the desired product in one-step separation process is an extremely difficult task. We introduced a pore integration strategy of modularizing ordered pore structures with specific functions for on-demand assembly to deal with complex multi-component separation systems, which are unattainable by each individual pore.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago 7820436, Chile; Instituto para el Desarrollo Sustentable, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago 7820436, Chile; Centro para el Desarrollo de la Nanociencia y Nanotecnología, CEDENNA, Santiago, Chile. Electronic address:
The volcanic soils in Chile, where a significant portion of agricultural activities take place, are impacted by the presence of veterinary drugs, including sulfamethoxazole (SMX). The study examines how different soil types influence the movement and retention of sulfamethoxazole (SMX) across four regions of Chile, focusing on conditions at a neutral pH of 7.0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!