Purpose: The purpose of this article was to provide multiple examples of how (central) auditory processing disorder ([C]APD) is being evaluated and treated at various audiology clinics throughout the United States.
Method: The authors present 5 cases highlighting the diagnosis and treatment of (C)APD in children and adults. Similarities and differences between these cases have been showcased through detailed histories, evaluation protocol, and treatment options. When possible, the rationale for evaluation procedures and intervention processes were described and compared with guidelines and findings within the literature.
Results And Conclusions: These cases illustrate the varied processes and clinical protocols by which children and adults are evaluated, diagnosed, counseled, and treated for (C)APD. In addition, similarities and differences between the referral source, evaluation team, developmental history, comorbidities, test battery, recommendations, and remediations were described. The multiple clinic sites, diversity of clinical philosophies, variety of test measures, and diversity of patient populations make these cases ideal for showcasing the assortment of methodologies used with patients who present with histories and characteristics consistent with (C)APD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1044/2017_AJA-16-0074 | DOI Listing |
J Ginseng Res
January 2025
Department of Oriental Medicine Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Global Campus, Yongin, Gyeonggi-do, Republic of Korea.
Background: Korean Red Ginseng and ginsenosides have been studied for their efficacy against various diseases, including those related to aging. However, most aging studies use D-galactose to induce aging, which often does not accurately represent natural aging. This study aimed to verify improvements in auditory, cognitive, and liver function through administering red ginseng to an 18-month-old naturally aging mouse model.
View Article and Find Full Text PDFFront Oncol
January 2025
The Second Clinical Medicine College, Jinan University, Shenzhen, China.
Introduction: Endolymphatic sac tumor (ELST) is a rare neoplasm that exhibits aggressive growth primarily in the endolymphatic capsule and can potentially affect nearby neurovascular structures. The diagnosis of ELST poses challenges due to its low prevalence, gradual progression, and nonspecific symptomatology. It is currently believed that prompt surgical intervention is recommended for endolymphatic sac tumors upon diagnosis.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, P. R. China.
Noise-induced hearing loss (NIHL) results from prolonged exposure to intense noise, causing damage to sensory outer hair cells (OHCs) and spiral ganglion neurons (SGNs). The blood labyrinth barrier (BLB) hinders systemic drug delivery to the inner ear. This study applied a retro-auricular round window membrane (RWM) method to bypass the BLB, enabling the transport of macromolecular proteins into the inner ear.
View Article and Find Full Text PDFProg Neurobiol
January 2025
Department of Biomedicine, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland. Electronic address:
The brain faces the challenging task of preserving a consistent portrayal of the external world in the face of disruptive sensory inputs. What alterations occur in sensory representation amidst noise, and how does brain activity adapt to it? Although it has previously been shown that background white noise (WN) decreases responses to salient sounds, a mechanistic understanding of the brain processes responsible for such changes is lacking. We investigated the effect of background WN on neuronal spiking activity, membrane potential, and network oscillations in the mouse central auditory system.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Neurobiology, Harvard Medical School, Boston, MA 02115.
The sense of hearing originates in the cochlea, which detects sounds across dynamic sensory environments. Like other peripheral organs, the cochlea is subjected to environmental insults, including loud, damage-inducing sounds. In response to internal and external stimuli, the central nervous system directly modulates cochlear function through olivocochlear neurons (OCNs), which are located in the brainstem and innervate the cochlear sensory epithelium.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!