In this study we showed that constitutive heterochromatin, GC-rich DNA and rDNA are implicated in chromosomal rearrangements during the basic chromosome number changing (dysploidy) in Reichardia genus. This small Mediterranean genus comprises 8-10 species and presents three basic chromosome numbers (x = 9, 8 and 7). To assess genome evolution and differentiation processes, studies were conducted in a dysploid series of six species: R. dichotoma, R. macrophylla and R. albanica (2n = 18), R. tingitana and R. gaditana (2n = 16), and R. picroides (2n = 14). The molecular phylogeny reconstruction comprised three additional species (R. crystallina and R. ligulata, 2n = 16 and R. intermedia, 2n = 14). Our results indicate that the way of dysploidy is descending. During this process, a positive correlation was observed between chromosome number and genome size, rDNA loci number and pollen size, although only the correlation between chromosome number and genome size is still recovered significant once considering the phylogenetic effect. Fluorescent in situ hybridisation also evidenced changes in number, position and organisation of two rDNA families (35S and 5S), including the reduction of loci number and, consequently, reduction in the number of secondary constrictions and nuclear organising regions from three to one per diploid genome. The potential mechanisms of chromosomal and genome evolution, strongly implicating heterochromatin, are proposed and discussed, with particular consideration for Reichardia genus.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5549912PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0182318PLOS

Publication Analysis

Top Keywords

chromosome number
16
number genome
12
genome size
12
reichardia genus
12
number
8
basic chromosome
8
genome evolution
8
loci number
8
genome
6
chromosome
5

Similar Publications

This case report describes a rare case of bi-phenotypic gastric cancer with two distinct, but clonally related, histological components. The first component, associated with Epstein-Barr virus (EBV) infection, exhibited the morphological features of gastric carcinoma with lymphoid stroma, suggesting that EBV, as an effective immunogenic factor, may trigger a prominent immune response within the tumour microenvironment. The second component, which was EBV-negative, displayed tubular/papillary morphology and features of increased biological aggressiveness, such as high-grade areas and lymphatic invasion.

View Article and Find Full Text PDF

A variant W chromosome in Centromochlus heckelii (Siluriformes, Auchenipteridae) and the role of repeated DNA in its heteromorphism.

Genet Mol Biol

January 2025

Instituto Nacional de Pesquisas da Amazônia, Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiva (PPG GCBEv), Manaus, AM, Brazil.

Centromochlus heckelii has the lowest diploid chromosome number (2n = 46) and the only described heteromorphic sex chromosome system in Auchenipteridae. This study presents a population of C. heckelii from the Central Amazon basin with subtle variations in the karyotype composition and a variant W chromosome with distinct morphology and increased C-positive heterochromatin content.

View Article and Find Full Text PDF

Background/purpose: Pulp polyp is often eliminated as dental waste. Pulp polyp cells were reported to have high proliferation activity which might be comprised of stem cells. However, little has been known on the presence of stem cells in the pulp polyp.

View Article and Find Full Text PDF

The T315I-inclusive compound mutation, the multiple mutations including the T315I mutation on the same BCR::ABL1 gene, confers resistance to diverse tyrosine kinase inhibitors (TKIs). Development of the F311I/T315I compound mutation has been reported in chronic myeloid leukemia patients who sequentially showed clinical resistance to imatinib and dasatinib. The establishment of a human leukemia model with the T315I-inclusive compound mutation remains an experimental challenge.

View Article and Find Full Text PDF

Cancer phylogenetic inference using copy number alterations detected from DNA sequencing data.

Cancer Pathog Ther

January 2025

School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, UK.

Cancer is an evolutionary process involving the accumulation of diverse somatic mutations and clonal evolution over time. Phylogenetic inference from samples obtained from an individual patient offers a powerful approach to unraveling the intricate evolutionary history of cancer and provides insights that can inform cancer treatment. Somatic copy number alterations (CNAs) are important in cancer evolution and are often used as markers, alone or with other somatic mutations, for phylogenetic inferences, particularly in low-coverage DNA sequencing data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!