Hybrid thin films based on Hydrocalumite (CaAlCl layered double hydroxide LDH) and tyrosinaseenzyme have been used for the elaboration of a high sensitive amperometric biosensor detecting polyphenols extracted from green tea. Structural properties of LDH nanomaterials were characterized by X-ray powder diffraction and Infra-Red spectroscopy, confirming its crystalline phase and chemical composition. CaAlCl-LDHs-thin films were deposited by spin-coating, and studied by atomic force microscopy to obtain information about the surface morphology of this host matrix before and after enzyme's immobilization. Electrochemical study using cyclic voltammetry and chronoamperometry shows good performances of the built-in biosensor with a high sensitivity for polyphenols concentrations ranging from 24 pM to and a limit of detection of 1.2 pM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TNB.2017.2736781 | DOI Listing |
Nanotechnology
January 2025
Technische Universität München School of Computation Information and Technology, Hans-Piloty-Strasse 1, 85748 Garching bei Muenchen, Munich, 85748, GERMANY.
We investigate the effect of focused-ion-beam (FIB) irradiation on spin waves with sub-micron wavelengths in Yttrium-Iron-Garnet (YIG) films. Time-resolved scanning transmission X-ray (TR-STXM) microscopy was used to image the spin waves in irradiated regions and deduce corresponding changes in the magnetic parameters of the film. We find that the changes of Gairradiation can be understood by assuming a few percent change in the effective magnetizationof the film due to a trade-off between changes in anisotropy and effective film thickness.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Mechanical Engineering, University of California at Riverside, Riverside, California 92521, United States.
Sensing light's polarization and wavefront direction enables surface curvature assessment, material identification, shadow differentiation, and improved image quality in turbid environments. Traditional polarization cameras utilize multiple sensor measurements per pixel and polarization-filtering optics, which result in reduced image resolution. We propose a nanophotonic pipeline that enables compressive sensing and reduces the sampling requirements with a low-refractive-index, self-assembled optical encoder.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Thin film Energy Storage Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur 603 203Tamil Nadu India.
Manganese oxides are a promising cathode material for aqueous zinc-ion batteries (AZIBs), but thin-film configurations remain underexplored. This study investigates the electrochemical dynamics of 60 nm thin MnO thin films, fabricated via RF magnetron reactive sputtering. It addresses the highest reported capacity (25 mAh/g) in thin film form, stability over 500 cycles, effective performance across varying current rates, surpassing previous studies and challenges such as phase stability, and capacity fading over extended cycling, aiming to enhance uniformity, minimizing diffusion barriers for improved performance.
View Article and Find Full Text PDFAdv Mater
January 2025
Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA.
Unconventional spin-orbit torques arising from electric-field-generated spin currents in anisotropic materials have promising potential for spintronic applications, including for perpendicular magnetic switching in high-density memory applications. Here, all the independent elements of the spin torque conductivity tensor allowed by bulk crystal symmetries for the tetragonal conductor IrO are determined via measurements of conventional (in-plane) anti-damping torques for IrO thin films in the high-symmetry (001) and (100) orientations. It is then tested whether rotational transformations of this same tensor can predict both the conventional and unconventional anti-damping torques for IrO thin films in the lower-symmetry (101), (110), and (111) orientations, finding good agreement.
View Article and Find Full Text PDFSci Technol Adv Mater
December 2024
JST-CREST, Saitama, Japan.
In this review, we present a new set of machine learning-based materials research methodologies for polycrystalline materials developed through the Core Research for Evolutionary Science and Technology project of the Japan Science and Technology Agency. We focus on the constituents of polycrystalline materials (i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!