Wastewater discharges introduce antibiotic residues and antibiotic-resistant bacteria (ARB) into surface waters. Both inputs directly affect the streambed resistome, either by exerting a selective pressure that favour the proliferation of resistant phenotypes or by enriching the resident communities with wastewater-associated ARB. Here, we investigated the impact of raw and treated urban wastewater discharges on epilithic (growing on rocks) and epipsammic (growing on sandy substrata) streambed biofilms. The effects were assessed by comparing control and impact sites (i) on the composition of bacterial communities; (ii) on the abundance of twelve antibiotic resistance genes (ARGs) encoding resistance to β-lactams, fluoroquinolones, sulphonamides, tetracyclines, macrolides and vancomycin, as well as the class 1 integron-integrase gene (intI1); (iii) on the occurrence of wastewater-associated bacteria, including putative pathogens, and their potential linkage to target ARGs. We measured more pronounced effects of raw sewage than treated wastewater at the three studied levels. This effect was especially noticeable in epilithic biofilms, which showed a higher contribution of wastewater-associated bacteria and ARB than in epipsammic biofilms. Comparison of correlation coefficients obtained between the relative abundance of both target ARGs and operational taxonomic units classified as either potential pathogens or nonpathogens yielded significant higher correlations between the former category and genes intI1, sul1, sul2 and ermB. Altogether, these results indicate that wastewater-associated micro-organisms, including potential pathogens, contribute to maintain the streambed resistome and that epilithic biofilms appear as sensitive biosensors of the effect of wastewater pollution in surface waters.

Download full-text PDF

Source
http://dx.doi.org/10.1111/mec.14288DOI Listing

Publication Analysis

Top Keywords

wastewater pollution
8
antibiotic resistance
8
bacterial communities
8
wastewater discharges
8
bacteria arb
8
surface waters
8
streambed resistome
8
wastewater-associated bacteria
8
target args
8
epilithic biofilms
8

Similar Publications

This work investigated the mechanical and catalytic degradation properties of FeMnCoCr-based high-entropy alloys (HEAs) with diverse compositions and porous structures fabricated via selective laser melting (SLM) additive manufacturing for wastewater treatment applications. The effects of Mn content (0, 30 at%, and 50 at%) and topological structures (gyroid, diamond, and sea urchin-inspired shell) on the compression properties and catalytic efficiency of the FeMnCoCr HEAs were discussed. The results indicated that an increase in the Mn content led to a phase structure transition that optimized mechanical properties and catalytic activities.

View Article and Find Full Text PDF

This review presents a comprehensive review of cellulose-chitosan-based biocomposites that have high potential as sustainable alternatives to synthetic polymers. These biocomposites, due to biocompatibility, biodegradability, and antimicrobial properties, attract attention for wide application in various industries. This review includes modern methods for producing cellulose-chitosan composites aimed at improving their mechanical and chemical properties, such as strength, flexibility, and water resistance.

View Article and Find Full Text PDF

Metal Biomonitoring Through Arboreal Species in Riparian Ecosystems: as a Bioindicator Species.

Plants (Basel)

January 2025

Laboratorio de Investigaciones Ambientales, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad, 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Morelos, Mexico.

Water pollution by metals is a global environmental problem. In riparian ecosystems, metal pollution generates adverse effects on organisms and reduces water quality. The Cuautla River is of great ecological relevance and an important water supplier.

View Article and Find Full Text PDF

Optimisation of Dairy Soiled Water as a Novel Duckweed Growth Medium.

Plants (Basel)

January 2025

School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Fields, North Mall, T23 TK30 Cork, Ireland.

As a result of intensive agriculture, large quantities of liquid wastewaters are produced. Dairy soiled water (DSW) is produced in large volumes during the milking process of cattle. It comprises essential plant nutrients such as nitrogen, phosphorus, and potassium.

View Article and Find Full Text PDF

The contamination of rivers by potentially toxic elements (PTEs) is a problem of global importance. The Valles River is Ciudad Valles' (Central Mexico) main source of drinking water. During the four seasons of the year, water samples (n = 6), sediment samples (n = 6), and plants (n = 10) were taken from three study sites selected based on the presence of anthropogenic activities in the Valles River.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!