Boron's unique chemical properties and its reactions with metals have yielded the large class of metal borides with compositions ranging from the most boron-rich YB (used as monochromator for synchrotron radiation) up to the most metal-rich NdFeB (the best permanent magnet to date). The excellent magnetic properties of the latter compound originate from its unique crystal structure to which the presence of boron is essential. In general, knowing the crystal structure of any given extended solid is the prerequisite to understanding its physical properties and eventually predicting new synthetic targets with desirable properties. The ability of boron to form strong chemical bonds with itself and with metallic elements has enabled us to construct new structures with exciting properties. In recent years, we have discovered new boride structures containing some unprecedented boron fragments (trigonal planar B units, planar B rings) and low-dimensional substructures of magnetically active elements (ladders, scaffolds, chains of triangles). The new boride structures have led to new superconducting materials (e.g., NbRuB) and to new itinerant magnetic materials (e.g., NbFeIrB). The study of boride compounds containing chains (Fe-chains in antiferromagnetic ScFeRuB), ladders (Fe-ladders in ferromagnetic TiFeRhB), and chains of triangles (Cr chains in ferrimagnetic and frustrated TiCrIrB) of magnetically active elements allowed us to gain a deep understanding of the factors (using density functional theory calculations) that can affect magnetic ordering of such low-dimensional magnetic units. We discovered that the magnetic properties of phases containing these magnetic subunits can be drastically tuned by chemical substitution within the metallic nonmagnetic network. For example, the small hysteresis (measure of magnetic energy storage) of TiFeRhB can be successively increased up to 24-times by gradually substituting Ru for Rh, a result that was even surpassed (up to 54-times the initial value) for Ru/Ir substitutions. Also, the type of long-range magnetic interactions could be drastically tuned by appropriate substitutions in the metallic nonmagnetic network as demonstrated using both experimental and theoretical methods. It turned out that Ru-rich and valence electron poor metal borides adopting the TiCoB or the ThFe structure types have dominating antiferromagnetic interactions, while in Rh-rich (or Ir-rich) and valence electron rich phases ferromagnetic interactions prevail, as found, for example, in the ScFeRuRhB and FeRhRuB series. Fascinatingly, boron clusters (e.g., B rings) even directly interact in some cases with the magnetic subunits, an interaction which was found to favor the Fe-Fe magnetic exchange interactions in the ferromagnetic NbFeIrB. Using less expensive transition metals, we have recently predicted new itinerant magnets, the experimental proof of which is still pending. Furthermore, new structures have been discovered, all of which are being studied experimentally and computationally with the aim of finding new superconductors, magnets, and mechanically hard materials. A new direction is being pursued in our group, as binary and ternary transition metal borides show great promise as efficient water splitting electrocatalysts at the micro- and nanoscale.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.accounts.7b00268 | DOI Listing |
Nat Prod Res
January 2025
Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand.
Powdered germinated Thai rice () is widely utilised as a dietary supplement to support health and prevent diseases. This study investigated the bioactive compound profile of water extracts from beverage powder made from Thai germinated brown rice (GBRE) and assessed its anticancer effects on cholangiocarcinoma, lung cancer, and liver cancer cell lines. Proton nuclear magnetic resonance (1H-NMR) revealed 23 metabolites, including amino acids, sugar, phenolic compounds and nitrogenous compounds.
View Article and Find Full Text PDFJ Integr Neurosci
January 2025
Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
Resting state networks (RSNs) of the brain are characterized as correlated spontaneous time-varying fluctuations in the absence of goal-directed tasks. These networks can be local or large-scale spanning the brain. The study of the spatiotemporal properties of such networks has helped understand the brain's fundamental functional organization under healthy and diseased states.
View Article and Find Full Text PDFChemistry
January 2025
Huazhong University of Science and Technology, 1037 Luoyu Road, 430074, Wuhan, CHINA.
Block copolymer (BCP) microparticles, which exhibit rapid change of morphology and physicochemical property in response to external stimuli, represent a promising avenue for the development of programmable smart materials. Among the methods available for generating BCP microparticles with adjustable morphologies, the confined assembly of BCPs within emulsions has emerged as a particularly facile and versatile approach. This review provides a comprehensive overview of the role of responsive surfactants in modulating interfacial interactions at the oil-water interface, which facilitates controlled BCP microparticle morphology.
View Article and Find Full Text PDFPharmaceutics
January 2025
Physics Department and i3N, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
Magnetic nanoparticles (MNPs) are advanced materials that combine the unique properties of magnetic materials and nanoscale dimensions, enabling a wide range of applications in biomedicine, environmental science, and information technology. This review provides a comprehensive yet accessible introduction to the fundamental principles, characterization techniques, and diverse applications of MNPs, with a focus on their nanoscale magnetic properties, such as superparamagnetism, single-domain behavior, and surface effects. It also delves into their classification and the critical role of parameters like magnetic anisotropy and blocking temperature.
View Article and Find Full Text PDFPharmaceutics
January 2025
Research Centre for Life Science and Healthcare, Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute (CBI), University of Nottingham Ningbo China, Ningbo 315000, China.
Malignant growth is expected to surpass other significant causes of death as one of the top reasons for dismalness and mortality worldwide. According to a World Health Organization (WHO) study, this illness causes approximately between 9 and 10 million instances of deaths annually. Chemotherapy, radiation, and surgery are the three main methods of treating cancer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!