Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A mechanistic study of arylations of aliphatic alcohols and hydroxide with diaryliodonium salts, to give alkyl aryl ethers and diaryl ethers, has been performed using experimental techniques and DFT calculations. Aryne intermediates have been trapped, and additives to avoid by-product formation originating from arynes have been found. An alcohol oxidation pathway was observed in parallel to arylation; this is suggested to proceed by an intramolecular mechanism. Product formation pathways via ligand coupling and arynes have been compared, and 4-coordinated transition states were found to be favored in reactions with alcohols. Furthermore, a novel, direct nucleophilic substitution pathway has been identified in reactions with electron-deficient diaryliodonium salts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5639379 | PMC |
http://dx.doi.org/10.1002/chem.201703057 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!