Neuropsychological functioning underlies behavioral symptoms of attention-deficit/hyperactivity disorder (ADHD). Children with all forms of ADHD are vulnerable to working memory deficits and children presenting with the inattentive form of ADHD (ADHD-I) appear particularly vulnerable to processing speed deficits. As ADHD-I is the most common form of ADHD presented by children in community settings, it is important to consider how treatment interventions for children with ADHD-I may be affected by deficits in processing speed and working memory. We utilize data collected from 199 children with ADHD-I, aged 7 to 11 years, who participated in a randomized clinical trial of a psychosocial-behavioral intervention. Our aims are first to determine whether processing speed or working memory predict treatment outcomes in ADHD-I symptom severity, and second whether they moderate treatment effects on ADHD-I symptom severity. Results of linear regression analyses reveal that baseline processing speed significantly predicts posttreatment ADHD-I symptom severity when controlling for baseline ADHD-I symptom severity, such that better processing speed is associated with greater symptom improvement. However, predictive effects of working memory and moderation effects of both working memory and processing speed are not supported in the present study. We discuss study limitations and implications of the relation between processing speed and treatment benefits from psychosocial treatments for children with ADHD-I.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5807232PMC
http://dx.doi.org/10.1007/s10802-017-0336-zDOI Listing

Publication Analysis

Top Keywords

processing speed
32
working memory
20
adhd-i symptom
16
symptom severity
16
children adhd-i
12
adhd-i
9
processing
8
speed predicts
8
treatment outcomes
8
attention-deficit/hyperactivity disorder
8

Similar Publications

Background: Alzheimer's disease (AD) is sometimes characterized as "type 3 diabetes" because hyperglycemia impairs cognitive function, particularly in the medial temporal lobe (MTL) and prefrontal regions. Further, both AD and type 2 diabetes (T2D) disproportionately impact African Americans. Although people with T2D are generally suggested to have lower episodic memory and executive function, limited data exist in older African Americans.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Departments of Neurology and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Background: Protective brain barriers, such as blood-brain barrier, become dysfunctional with age. The BBB is a dynamic and selective barrier, gating the passage of molecules and cells to and from the brain. The function of this barrier is critical for the maintenance of brain homeostasis.

View Article and Find Full Text PDF

Background: Cardiovascular risk factors and depressive symptoms have both been independently shown to be negatively associated with cognitive function. However, the nature of the influence of comorbid depressive symptoms and cardiovascular risk on cognitive function is unclear, and there have been inconsistent findings as to which cognitive domains may be most associated with this relationship.

Method: U.

View Article and Find Full Text PDF

Background: Cognitive changes affecting performance are subtle in early stages of Alzheimer's Disease (AD) and may emerge only with more complex tasks. Driving is a highly challenging instrumental activity of daily living, requiring higher order integration of cognitive skills. For example, driving on freeway entrance ramps requires heightened cognitive engagement such as rapid responses to fast-emerging traffic and sudden speed changes, combining sensory processing and manipulative actions.

View Article and Find Full Text PDF

Clinical Manifestations.

Alzheimers Dement

December 2024

Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.

Background: Individuals with preclinical Alzheimer's disease (AD) show reduced practice effects on annually repeated neuropsychological testing, suggesting a decreased ability to learn over repeated exposures. Remote, digital testing enables the assessment of learning over more frequent time intervals, thereby facilitating a more rapid detection of those early learning deficits. We previously showed that multi-day learning on the Boston Remote Assessment for Neurocognitive Health (BRANCH) was indeed diminished in Αβ+ cognitively unimpaired (CU) older adults.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!