Fibroblast growth factor 8 (FGF8), a member of the fibroblast growth factor (FGF) family, is upregulated in several human cancers, including HCC (HCC). Previous studies have demonstrated that FGF8 increased cell growth and invasion of tumor cells. In the present study we investigated whether FGF8 is involved in the cell proliferation and resistance to several drugs in human HCC cells. We stably overexpressed FGF8 by lentiviral transfection. In addition, we also added recombinant FGF8 instead of stably overexpressing FGF8 in human HCC cells. Stable overexpression of FGF8 or exogenous recombinant FGF8 resulted in significantly enhanced cell proliferation in human HCC cells. With the use of CellTiter-Glo assay for the determination of cell viability, we found that FGF8 increased the resistance to epidermal growth factor receptor (EGFR) inhibitors in human HCC cells. Additionally, the expression of EGFR was also upregulated by stably overexpressing FGF8 or exogenous recombinant FGF8. Yes-associated protein 1 (YAP1) was reported to upregulate the expression of EGFR. Moreover, we also found that FGF8 increased the expression of YAP1 and knockdown of YAP1 eliminated the upregulation of EGFR and the resistance to EGFR inhibition induced by FGF8. Our study provides evidence that FGF8 plays an important role in the resistance to EGFR inhibition of human HCC cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3892/or.2017.5887 | DOI Listing |
Medicine (Baltimore)
January 2025
Department of Hepatobiliary Surgery, The Third Central Hospital of Tianjin, Tianjin, China.
Background: In patients with advanced hepatocellular carcinoma (HCC) following sorafenib failure, regorafenib has been used as an initial second-line drug. It is unclear the real efficacy and safety of sorafenib-regorafenib sequential therapy compared to placebo or other treatment (cabozantinib or nivolumab or placebo) in advanced HCC.
Methods: Four electronic databases (PubMed, Embase, Web of Science, and Ovid) were systematically searched for eligible articles from their inception to July, 2024.
Annu Rev Pathol
January 2025
Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA.
The development of hepatocellular carcinoma (HCC) involves an intricate interplay among various cell types within the liver. Unraveling the orchestration of these cells, particularly in the context of various etiologies, may hold the key to deciphering the underlying mechanisms of this complex disease. The advancement of single-cell and spatial technologies has revolutionized our ability to determine cellular neighborhoods and understand their crucial roles in disease pathogenesis.
View Article and Find Full Text PDFJ Cell Mol Med
January 2025
Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.
Hepatocellular carcinoma (HCC) poses a continual therapeutic challenge owing to its elevated incidence and unfavourable prognosis, underscoring the critical need for the discovery of new molecular targets for detection and therapy. This work included the analysis of three publically accessible HCC datasets from TCGA and GEO. Instrumental variables (IVs) were derived via expression quantitative trait loci (eQTL) analysis, then followed by two-sample Mendelian randomisation (MR) analysis utilising publically available summary statistics.
View Article and Find Full Text PDFToxics
January 2025
Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, School of Public Health, Guilin Medical University, Guilin 541199, China.
Bisphenol S (BPS) is a typical endocrine disruptor associated with obesity. To observe BPS effects on lipid metabolism in HepG2 and SK-Hep-1 human HCC cells, a CCK-8 assay was used to assess cell proliferation in response to BPS, and the optimal concentration of BPS was selected. Biochemical indices such as triglyceride (TG) and total cholesterol (T-CHO), and oxidative stress indices such as malondialdehyde (MDA) and catalase (CAT) were measured.
View Article and Find Full Text PDFVaccines (Basel)
January 2025
Division of High-Risk Pathogens, Department of Laboratory Diagnosis and Analysis, Korea Disease Control and Prevention Agency, KDCA, Cheongju 28159, Republic of Korea.
Background: Botulinum neurotoxins (BoNTs), produced by , are potent protein toxins that can cause botulism, which leads to death or neuroparalysis in humans by targeting the nervous system. BoNTs comprise three functional domains: a light-chain enzymatic domain (LC), a heavy-chain translocation domain (HC), and a heavy-chain receptor-binding domain (HC). The HC domain is critical for binding to neuronal cell membrane receptors and facilitating BoNT internalization via endocytosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!