Many real-world systems can be described by scale-free networks with power-law degree distributions. Scale-free networks show a "robust yet fragile" feature due to their heterogeneous degree distributions. We propose to enhance the structural robustness of scale-free networks against intentional attacks by changing the displayed network structure information rather than modifying the network structure itself. We first introduce a simple mathematical model for attack information and investigate the impact of attack information on the structural robustness of scale-free networks. Both analytical and numerical results show that decreasing slightly the attack information perfection by information disturbance can dramatically enhance the structural robustness of scale-free networks. Then we propose an optimization model of disturbance strategies in which the cost constraint is considered. We analyze the optimal disturbance strategies and show an interesting but counterintuitive finding that disturbing "poor nodes" with low degrees preferentially is more effective than disturbing "rich nodes" with high degrees preferentially. We demonstrate the efficiency of our method by comparison with edge addition method and validate the feasibility of our method in two real-world critical infrastructure networks.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5548747 | PMC |
http://dx.doi.org/10.1038/s41598-017-07878-2 | DOI Listing |
Brief Bioinform
November 2024
Department of Translational Research, Dasman Diabetes Institute, Dasman 15462, Kuwait City, Kuwait.
In response to distinct cellular stresses, the p53 exhibits distinct dynamics. These p53 dynamics subsequently control cell fate. However, different stresses can generate the same p53 dynamics with different cell fate outcomes, suggesting that the integration of dynamic information from other pathways is important for cell fate regulation.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Engineering Management, Chongqing University, Chongqing, PR China.
The emergency supply chain is a vital component of the emergency management system and serves as the cornerstone for delivering relief during emergencies. This paper focuses on investigating the propagation mechanism of supply chain risks in public health emergencies. Firstly, by analyzing the characteristics of emergency supply chains, this study enhances the formation mechanism of scale-free networks in emergency supply chains from a reliability perspective through the utilization of Decision Experimentation and Evaluation Laboratory (DEMATEL) and Analytic Network Process (ANP) methods.
View Article and Find Full Text PDFChaos
January 2025
School of Mathematical Science, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
This study explores the impact of stochastic resetting on the random walk dynamics within scale-free (u,v)-flowers. Utilizing the generating function technique, we develop a recursive relationship for the generating function of the first passage time and establish a connection between the mean first passage time with and without resetting. Our investigation spans multiple scenarios, with the random walker starting from various positions and aiming to reach different target nodes, allowing us to identify the optimal resetting probability that minimizes the mean first passage time for each case.
View Article and Find Full Text PDFJ Math Biol
January 2025
Laboratory of Mathematics and Complex Systems, Ministry of Education, School of Mathematical Sciences, Beijing Normal University, Beijing, People's Republic of China.
Networked evolutionary game theory is a well-established framework for modeling the evolution of social behavior in structured populations. Most of the existing studies in this field have focused on 2-strategy games on heterogeneous networks or n-strategy games on regular networks. In this paper, we consider n-strategy games on arbitrary networks under the pairwise comparison updating rule.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Gynaecology and Obstetrics, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, China.
Preeclampsia (PE) is a common hypertensive disease in women with pregnancy. With the development of bioinformatics, WGCNA was used to explore specific biomarkers to provide therapy targets efficiently. All samples were obtained from gene expression omnibus (GEO), then we used a package named "WGCNA" to construct a scale-free co-expression network and modules related to PE.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!