Human immunodeficiency virus (HIV) causes damage, directly or indirectly, to the whole hematopoietic system, including CD34 hematopoietic stem/progenitor cells (HSPCs). CXCR4-tropic strains of HIV-1 may affect the function of CD34CXCR4 progenitor cells either by infecting the cells or modifying the dynamics of more differentiated hematopoietic cells. However, CD34 cells are known for their resistance to HIV-1 infection in vitro, which restricts any detailed analysis of the impact of HIV on HSPCs. We report the use of RetroNectin, a recombinant fibronectin fragment used for gene transfer with lentiviral vectors, to overcome the limitation associated with CD34 cell resistance to HIV-1 infection. RetroNectin coating of plates improved in vitro HIV-1 infectivity on human CD34 cells by 10 fold. This resulted in stable HIV-1 infection for 5 weeks in an OP9-DL1 coculture. These results suggest that RetroNectin may be a useful tool for long-term monitoring of in vitro HIV-infected CD34 cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jviromet.2017.08.003 | DOI Listing |
Front Immunol
January 2025
Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States.
Epidemiological evidence suggests that post-menopausal women are more susceptible to HIV infection following sexual intercourse than are younger cohorts for reasons that remain unclear. Here, we evaluated how menopause-associated changes in CD4 T cell numbers and subsets as well as HIV coreceptor expression, particularly CCR5, in the endometrium (EM), endocervix (CX), and ectocervix (ECX) may alter HIV infection susceptibility. Using a tissue-specific mixed cell infection model, we demonstrate that while no changes in CD14 macrophage infection susceptibility were observed, CD4 T cell HIV-1 infection frequency increases following menopause in the EM, but not CX nor ECX.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Division of Infectious Diseases, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, Colorado, United States of America.
Lenacapavir (LEN) is a highly potent, long-acting antiretroviral medication for treating people infected with muti-drug-resistant HIV-1 phenotypes. The inhibitor targets multifaceted functions of the viral capsid protein (CA) during HIV-1 replication. Previous studies have mainly focused on elucidating LEN's mode of action during viral ingress.
View Article and Find Full Text PDFEmerg Microbes Infect
January 2025
Guangxi Key Laboratory of AIDS Prevention Control and Translation, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, Guangxi, China.
In Guangxi, the number of newly diagnosed HIV-1 infections among students is continuously increasing, highlighting the need for a detailed understanding of local transmission dynamics, particularly focusing on key drivers of transmission. We recruited individuals newly diagnosed with HIV-1 in Nanning, Guangxi, and amplified and sequenced the HIV-1 pol gene to construct a molecular network. Bayesian phylogenetic analysis was utilized to identify migration events, and multivariable logistic regression was employed to analyze factors influencing clustering and high linkage.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
ine orporator 5 (INC5, SER5) suppresses viral cell-free infection. However, its antiviral potency under viral cell-cell infection is not examined yet. Here, we established the cell-cell infection systems to assess SER5's antiviral activity on HIV-1 and bovine leukemia virus (BLV).
View Article and Find Full Text PDFJ Med Virol
February 2025
Department of Chemistry, Assam University, Silchar, India.
The biological applications of noncationic porphyrin-fullerene (P-F) dyads as anti-HIV agents have been limited despite the established use of several cationic P-F dyads as anti-cancer photodynamic therapy (PDT) agents. This article explores the potential of amphiphilic non-cationic porphyrin-fullerene dyads as HIV-1 inhibitors under both PDT (light-treated) and non-PDT (dark) conditions. The amphiphilic P-F dyads, PBC and PBC, demonstrated enhanced efficacy in inhibiting the entry and production of HIV-1 (subtypes B and C).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!