Azilsartan ameliorates diabetic cardiomyopathy in young db/db mice through the modulation of ACE-2/ANG 1-7/Mas receptor cascade.

Biochem Pharmacol

Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan; Department of Physiology and Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, Australia.

Published: November 2017

Hyperglycemia up-regulates intracellular angiotensin II (ANG-II) production in cardiac myocytes. This study investigated the hemodynamic and metabolic effects of azilsartan (AZL) treatment in a mouse model of diabetic cardiomyopathy and whether the cardioprotective effects of AZL are mediated by the angiotensin converting enzyme (ACE)-2/ANG 1-7/Mas receptor (R) cascade. Control db/+ and db/db mice (n=5 per group) were treated with vehicle or AZL (1 or 3mg/kg/d oral gavage) from the age of 8 to 16weeks. Echocardiography was then performed and myocardial protein levels of ACE-2, Mas R, ATR, ATR, osteopontin, connective tissue growth factor (CTGF), atrial natriuretic peptide (ANP) and nitrotyrosine were measured by Western blotting. Oxidative DNA damage and inflammatory markers were assessed by immunofluorescence of 8-hydroxy-2'-deoxyguanosine (8-OHdG), tumor necrosis factor (TNF)-α and interleukin 6 (IL-6). Compared with db/+ mice, the vehicle-treated db/db mice developed obesity, hyperglycemia, hyperinsulinemia and diastolic dysfunction along with cardiac hypertrophy and fibrosis. AZL treatment lowered blood pressure, fasting blood glucose and reduced peak plasma glucose during an oral glucose tolerance test. AZL-3 treatment resulted in a significant decrease in the expression of cytokines, oxidative DNA damage and cardiac dysfunction. Moreover, AZL-3 treatment significantly abrogated the downregulation of ACE-2 and Mas R protein levels in db/db mice. Furthermore, AZL treatment significantly reduced cardiac fibrosis, hypertrophy and their marker molecules (osteopontin, CTGF, TGF-β1 and ANP). Short-term treatment with AZL-3 reversed abnormal cardiac structural remodeling and partially improved glucose metabolism in db/db mice by modulating the ACE-2/ANG 1-7/Mas R pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bcp.2017.07.022DOI Listing

Publication Analysis

Top Keywords

db/db mice
20
ace-2/ang 1-7/mas
12
azl treatment
12
diabetic cardiomyopathy
8
1-7/mas receptor
8
receptor cascade
8
protein levels
8
ace-2 mas
8
oxidative dna
8
dna damage
8

Similar Publications

Intestinal microbiota are pathophysiologically involved in diabetic nephropathy (DN). Dapagliflozin, recognized for its blood glucose-lowering effect, has demonstrated efficacy in improving DN. However, the mechanisms beyond glycemic control that mediate the impact of dapagliflozin on DN remain unclear.

View Article and Find Full Text PDF

Berberine alleviates AGEs-induced ferroptosis by activating NRF2 in the skin of diabetic mice.

Exp Biol Med (Maywood)

December 2024

Institute of Disease-Oriented Nutritional Research, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China.

Advanced glycation end products (AGEs) have adverse effects on the development of diabetic complications. Berberine (BBR), a natural alkaloid, has demonstrated its ability to promote the delayed healing of skin wounds. However, the impact of BBR on AGEs-induced ferroptosis in skin cells and the underlying molecular mechanisms remains unexplored.

View Article and Find Full Text PDF

This study aimed to verify the effect of angiotensin (1-7) on improving islet function and further explore the signaling pathway that may be involved in this improvement. It also aimed to explore the effects of angiotensin (1-7) on blood glucose levels, islet function, and morphological changes in db/db mice and its potential signal pathway. Forty-five db/db mice were divided randomly into a model control group and different doses of angiotensin (1-7) intervention groups (0, 150, 300, and 600 g/kg/d), while seven db/m mice were assigned as the normal control group.

View Article and Find Full Text PDF

Lipotoxicity-induced upregulation of FIS1 exacerbates mitochondrial fragmentation and promotes NLRP3-dependent pyroptosis in diabetic cardiomyopathy.

Free Radic Biol Med

December 2024

Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China. Electronic address:

Background: Lipotoxicity is a significant factor in the pathogenesis of diabetic cardiomyopathy (DbCM), a condition characterized by mitochondrial fragmentation and pyroptosis. Mitochondrial fission protein 1 (FIS1) plays a role in mitochondrial fission by anchoring dynamin-related protein 1 (DRP1). However, the specific contribution of FIS1 to DbCM remains unclear.

View Article and Find Full Text PDF

Purpose: The retina contains the highest concentration of the omega 3 fatty acid, docosahexaenoic acid (DHA), in the body. Although epidemiologic studies showed an inverse correlation between the consumption of omega 3 fatty acids and the prevalence of diabetic retinopathy, there are no data showing the effect of diabetes on retinal DHA in humans. In this study, we measured the DHA content of the retina in diabetic and non-diabetic humans as well as mice and determined the effect of diabetes on retinal thickness and function in mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!