Type B photoreceptors of the nudibranch mollusc Hermissenda crassicornis receive excitatory synaptic potentials (EPSPs) whose frequency is controlled by potential changes of a neighboring cell known as the S optic ganglion cell which is thought to be electrically coupled to the presynaptic source of these EPSPs, the E optic ganglion cell. The frequency of the EPSPs increases when a conditioned stimulus (light) is paired with an unconditioned stimulus (rotation) during acquisition of a Pavlovian conditioned response. The results of the present study are consistent with an adrenergic origin for these EPSPs. Noradrenergic agonists (greater than 100 microM), norepinephrine and clonidine, only slightly depolarize the type B cell but clearly prolong its depolarizing response to light. Serotonin, by contrast, causes hyperpolarization of the type B cell's resting potential as well as after a light step. Clonidine reduces voltage-dependent outward K+ currents (IA, an early current, ICa2+-K+, a late Ca2+-dependent current) that control the type B cell's excitability (and thus its light response and membrane potential). These effects of clonidine are reduced or blocked by the alpha 2-receptor antagonist, yohimbine (0.5 microM), but not the alpha 1-blocker, prazosin. The same yohimbine concentration also blocked depolarizing synaptic excitation of the type B cell in response to depolarization of a simultaneously impaled S optic ganglion cell. Histochemical techniques (both the glyoxylic acid method of de la Torre and Surgeon and the formaldehyde-induced fluorescence or Falck-Hillarp method) demonstrated the presence of a biogenic amine(s) within a single neuron in each optic ganglion as well as three or four cells within the vicinity of previously identified visual interneurons. No serotonergic neurons were found within the optic ganglion or in proximity to visual interneurons. A clonidine-like synaptic effect on type B cells, therefore, could amplify conditioning-specific changes of membrane currents by increasing type B depolarization and possibly, as well, by elevating intracellular second messengers.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1471-4159.1987.tb04108.xDOI Listing

Publication Analysis

Top Keywords

optic ganglion
20
ganglion cell
12
membrane currents
8
type cell
8
type cell's
8
visual interneurons
8
type
7
cell
6
optic
5
ganglion
5

Similar Publications

Optogenetic therapy is a promising vision restoration method where light sensitive opsins are introduced to the surviving inner retina following photoreceptor degeneration. The cell type targeted for opsin expression will likely influence the quality of restored vision. However, a like-for-like pre-clinical comparison of visual responses evoked following equivalent opsin expression in the two major targets, ON bipolar (ON BCs) or retinal ganglion cells (RGCs), is absent.

View Article and Find Full Text PDF

Background/ Aims: To analyze the longitudinal change in Bruch's membrane opening minimal rim width (BMO-MRW) and peripapillary retinal nerve fiber layer (pRNFL) thickness using optical coherence tomography (OCT) after implantation of a PRESERFLO® microshunt for surgical glaucoma management in adult glaucoma patients.

Methods: Retrospective data analysis of 59 eyes of 59 participants undergoing implantation of a PRESERFLO microshunt between 2019 and 2022 at a tertiary center for glaucoma management. Surgical management included primary temporary occlusion of the glaucoma shunt to prevent early hypotony.

View Article and Find Full Text PDF

The impact of various neurodegenerative diseases on the retina has been investigated in recent years using optical coherence tomography (OCT). Epilepsy, classified as a neurodegenerative disorder, has been indicated to affect the structural integrity of the retina. Moreover, there is ongoing debate regarding the relative contribution of disease pathogenesis and the consumption of anti-epileptic drugs (AEDs) to these retinal changes.

View Article and Find Full Text PDF

Transplantation of genome-edited retinal organoids restores some fundamental physiological functions coordinated with severely degenerated host retinas.

Stem Cell Reports

January 2025

Research Center, Kobe City Eye Hospital, Kobe, Hyogo 650-0047, Japan; Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan; Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan. Electronic address:

We have previously shown that the transplantation of stem cell-derived retinal organoid (RO) sheets into animal models of end-stage retinal degeneration can lead to host-graft synaptic connectivity and restoration of vision, which was further improved using genome-edited Islet1 ROs (gROs) with a reduced number of ON-bipolar cells. However, the details of visual function restoration using this regenerative therapeutic approach have not yet been characterized. Here, we evaluated the electrophysiological properties of end-stage rd1 retinas after transplantation (TP-rd1) and compared them with those of wild-type (WT) retinas using multi-electrode arrays.

View Article and Find Full Text PDF

Purpose: To investigate the repeatability of optical coherence tomography angiography (OCTA) parameters in participants with different severities of glaucoma.

Methods: Subjects with open-angle glaucoma were enrolled prospectively and categorised into mild (mean deviation [MD] of 24-2 visual field test ≥ -6 dB), moderate to advanced (-6 > MD ≥ -20 dB) and severe glaucoma groups (MD < -20 dB). OCTA was performed three times within a single visit to obtain superficial and deep macular vessel density (VD) and peripapillary vessel and capillary density.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!