The present study investigated the effects of HSP90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG) on apoptosis and the cell cycle of the HCT-116 human colon carcinoma cell line, with the aim of elucidating their underlying mechanisms. MTT was used to examine the inhibitory effects of 17-AAG on the proliferation of HCT-116 cells at various time points and doses. The cells were stained with Annexin V-fluorescein isothiocyanate/propidium iodide and evaluated by flow cytometry. The expression of signal transducer and activator of transcription (STAT)3, cyclin D1, cytochrome (cyt-), caspase 9 and caspase 3 at the mRNA and protein level was determined using reverse transcription-polymerase chain reaction and western blotting. Treatment with 17-AAG at a concentration of 1.25-20 mg/l for 24 and 48 h significantly inhibited the proliferation of HCT-116 cells in a time-dependent and concentration-dependent manner. Treatment with 17-AAG at concentrations of 1.25, 2.5 and 5 mg/l for 48 h significantly induced apoptosis and cell cycle arrest in HCT-116 cells. Exposure to 17-AAG at concentrations of 1.25, 2.5 and 5 mg/l for 48 h significantly downregulated the mRNA and protein expression of STAT3 and cyclin D1, but upregulated cyt-, caspase 9 and caspase 3 in a concentration-dependent manner in HCT-116 cells. Therefore 17-AAG is able to inhibit cell proliferation, inducing apoptosis and G stage cell cycle arrest by downregulating the expression of cyclin D1, and promoting the mitochondria apoptosis by downregulating STAT3 in HCT-116 cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5530076 | PMC |
http://dx.doi.org/10.3892/ol.2017.6442 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!