Rho GDP dissociation inhibitors (GDIs) are pivotal regulators of Rho GTPases, which are essential for tumor progression, yet their role in hepatocellular carcinoma (HCC) remains poorly understood. The purpose of the present study was to assess the role of RhoGDIs in the invasiveness and migration of liver cancer, and to determine their clinical prognostic significances in HCC following liver transplantation (LT). In the present study, the expression of RhoGDIs was assessed using reverse transcription-quantitative polymerase chain reaction and confirmed by western-blot analysis and immunohistochemistry. Their prognostic values were also analyzed, and determined in patients treated with LT. In addition, the functions of RhoGDIs in liver cancer cell line were studied . As a result, the downregulation of RhoGDI1 and RhoGDI2 at mRNA and protein levels were detected in HCC when compared with that of adjacent noncancerous tissues (P<0.05). However, the level of RhoGDI3 was identified to be similar in tumor and para-carcinoma tissues. Additionally, Kaplan-Meier curves demonstrated that patients with lower expression of RhoGDI1 or RhoGDI2 exhibited significantly increased risk of tumor recurrence following LT (P=0.007 and P=0.006, respectively). Cox proportional hazards model analysis revealed that the decreased expression level of RhoGDI2 was an unfavorable independent prognostic factor (hazard ratio, 3.306; P=0.001). studies involving the silencing of RhoGDI1 or RhoGDI2 demonstrated a significant increase in the migratory and invasive ability of tumor cells upon the silencing of these genes. Results from the present study indicate that RhoGDI dysregulation is a frequent event in human HCC, and that it promotes cancer progression by stimulating cell migration and invasion. RhoGDI2 may be a prognostic biomarker for patients with HCC following LT, and act as a potential therapeutic target.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5529870 | PMC |
http://dx.doi.org/10.3892/ol.2017.6333 | DOI Listing |
J Am Chem Soc
January 2025
Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260, United States.
Small GTPases (smG) are a 150-member family of proteins, comprising five subfamilies: Ras, Rho, Arf, Rab, and Ran-GTPases. These proteins function as molecular switches, toggling between two distinct nucleotide-bound states. Using traditional multidimensional heteronuclear NMR, even for single smGs, numerous experiments, high protein concentrations, expensive isotope labeling, and long analysis times are necessary.
View Article and Find Full Text PDFCells
December 2024
Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan.
encodes a small GTPase of the Rho family that plays a critical role in actin cytoskeleton remodeling and intracellular signaling regulation. Pathogenic variants in , all of which reported thus far affect conserved residues within its functional domains, have been linked to neurodevelopmental disorders characterized by diverse phenotypic features, including structural brain anomalies and facial dysmorphism (NEDBAF). Recently, a novel de novo variant (NM_005052.
View Article and Find Full Text PDFBMC Glob Public Health
December 2024
Emerging Diseases Epidemiology Unit, Institut Pasteur, Université Paris Cité, 25 Rue du Docteur Roux, 75015, Paris, France.
Background: Important differences in excess mortality between European countries during the COVID-19 pandemic have been reported. Understanding the drivers of these differences is essential to pandemic preparedness.
Methods: We examined patterns in age- and sex-standardized cumulative excess mortality in 13 Western European countries during the first 30 months of the COVID-19 pandemic and the correlation of country-level characteristics of interest with excess mortality.
Proteins
December 2024
Department of Bioengineering, Istanbul Medeniyet University, Istanbul, Turkey.
(a) Clostridioides difficile (C. difficile) bacterium can cause severe diarrhea and its over-colonization in the host's intestinal tract lead to the development of pseudomembranous colitis, generally due to antibiotic usage. The primary exotoxins involved are toxin A (TcdA) and toxin B (TcdB), the latter being more pathogenic.
View Article and Find Full Text PDFBiochem Biophys Rep
December 2024
Department of Internal Medicine, Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, 214002, China.
The Vav family of guanosine nucleotide exchange factors (GEFs) regulates the phosphorylation of tyrosinase, influencing various physiological and pathological processes by modulating the binding of Rho GTPases to GDP/GTP. Recent research has highlighted the critical role of Vav family activation in tumorigenesis, neurological disorders, immune-related dysfunctions, and other diseases. This review offers a comprehensive overview of the structure and function of Vav proteins and their significant impact on the pathophysiology of atherosclerosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!