Recently mode-division-multiplexing (MDM) has been widely investigated to enhance fiber optics capacity, in which modes or mode groups in few-mode fiber (FMF) or multi-mode fiber (MMF) are exploited as different spatial channels for data transmission. For short-reach applications, significantly reducing inter-spatial-channel crosstalk to avoid coherent detection and multiple-input-multiple-output (MIMO) equalization is preferred. Currently most studies focus on the design of weakly-coupled FMFs and mode (de)multiplexers. Alternatively, in this work, a wavelength-interleaved (WI) scheme is proposed to mitigate inter-spatial-channel crosstalk by optimizing the design of direct detection (DD) MDM and wavelength-division-multiplexing (WDM) system. In weakly-coupled MDM systems, crosstalk mainly comes from the adjacent spatial channels, and the signal-to-crosstalk beat interference (SCBI) constitutes main crosstalk impairment after square-law detection. The WI scheme interleaves the WDM grids in adjacent spatial channels by half WDM channel spacing and uses an electrical low-pass filtering (ELPF) to remove out-of-band SCBI. The effectiveness of SCBI suppression is theoretically analyzed. The feasibility of WI scheme is experimentally verified by 3-mode 3-wavelength MDM-WDM transmission over 500-m OM3 MMF. Enabled by WI scheme, record 120-km 10G-per-channel MDM-WDM transmission over 2-mode FMF without MIMO equalization is successfully demonstrated. The WI scheme is promising to enhance the performance of short reach or even metro MDM optics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.25.016603 | DOI Listing |
PLoS One
April 2024
Department of Electronics and Communication Engineering, National Institute of Technology, New Delhi, India.
Photonic radar, a cornerstone in the innovative applications of microwave photonics, emerges as a pivotal technology for future Intelligent Transportation Systems (ITS). Offering enhanced accuracy and reliability, it stands at the forefront of target detection and recognition across varying weather conditions. Recent advancements have concentrated on augmenting radar performance through high-speed, wide-band signal processing-a direct benefit of modern photonics' attributes such as EMI immunity, minimal transmission loss, and wide bandwidth.
View Article and Find Full Text PDFA successful transmission of 14 multiplexed orbital angular momentum (OAM) channels each carrying 80 wavelengths over a 100-km single-span ring-core fiber (RCF) is experimentally demonstrated. Each transmission channel is modulated by a 20-GBaud quadrature phase-shift keying (QPSK) signal, achieving a record spectral-efficiency-distance product of 1870 (bit/s/Hz)·km for the single-core RCF based mode division multiplexing (MDM) transmissions. In addition, only low-complexity 2×2 or 4×4 multiple-input multiple-output (MIMO) equalization with time-domain equalization tap number no more than 25 is required to deal with the crosstalk among the highly degenerate intra-MG modes at the receiving end of the demonstrated OAM-MDM-WDM system, showing great potential in large-capacity and relatively long-distance MDM transmission with low digital signal processing (DSP) complexity.
View Article and Find Full Text PDFWe investigate modal crosstalk in silicon photonic MDM-based interconnects using tapered multiplexers. Crosstalk from coherent optical interference originates from variation in the physical structure and alters the transmission link performance. Through simulations and experimental work, optical crosstalk as a function of wavelength is analyzed to understand its impact in MDM and MDM-WDM dual-multiplexing applications.
View Article and Find Full Text PDFRecently mode-division-multiplexing (MDM) has been widely investigated to enhance fiber optics capacity, in which modes or mode groups in few-mode fiber (FMF) or multi-mode fiber (MMF) are exploited as different spatial channels for data transmission. For short-reach applications, significantly reducing inter-spatial-channel crosstalk to avoid coherent detection and multiple-input-multiple-output (MIMO) equalization is preferred. Currently most studies focus on the design of weakly-coupled FMFs and mode (de)multiplexers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!