We present a versatile laser system which provides more than 1.5 W of narrowband light, tunable in the range from 455-463 nm. It consists of a commercial titanium-sapphire laser which is frequency doubled using resonant cavity second harmonic generation and stabilized to an external reference cavity. We demonstrate a wide wavelength tuning range combined with a narrow linewidth and low intensity noise. This laser system is ideally suited for atomic physics experiments such as two-photon excitation of Rydberg states of potassium atoms with principal quantum numbers n > 18. To demonstrate this we perform two-photon spectroscopy on ultracold potassium gases in which we observe an electromagnetically induced transparency resonance corresponding to the 35s state and verify the long-term stability of the laser system. Additionally, by performing spectroscopy in a magneto-optical trap we observe strong loss features corresponding to the excitation of s, p, d and higher-l states accessible due to a small electric field.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.25.014829DOI Listing

Publication Analysis

Top Keywords

laser system
16
ultracold potassium
8
laser
5
versatile high-power
4
high-power 460
4
460 laser
4
system
4
system rydberg
4
rydberg excitation
4
excitation ultracold
4

Similar Publications

A synthetic biology approach for identifying de-SUMOylation enzymes of substrates.

J Integr Plant Biol

January 2025

Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.

A synthetic biology approach using a robust reconstitution system in Escherichia coli enables the identification of plant ubiquitin-like proteases responsible for removing the small ubiquitin-like modifier (SUMO) post-translational modifications from specific protein substrates.

View Article and Find Full Text PDF

One of the best and most advanced methods for disposal of urban, hospital, industrial, and other hazardous waste is to convert waste into combustible gases in reactors based on plasma arc technology. Also used for renewable energy generation, this technology involves thermal treatment without a combustion process; therefore, the waste is completely decomposed into simple molecules in a near vacuum environment almost devoid of Oxygen at elevated temperatures. The present research uses a thermal transferred arc plasma reactor to conduct a feasibility study on the pyrolysis of three types of wastes: Antar, Orthotoluenediamine (OTD), and Tar.

View Article and Find Full Text PDF

Cholangiocarcinoma (CCA) is an aggressive cancer originating from bile duct epithelial cells, with a high rate of recurrence following surgical resection. Recurrence is categorized as early linked to aggressive tumor biology than late recurrence. This study aimed to identify novel peptide mass fingerprints (PMFs) and potential biomarker panels in the serum of CCA patients with early and late recurrence using mass spectrometry.

View Article and Find Full Text PDF

In situ vaccine (ISV) can activate the anti-tumor immune system by inducing immunogenic cell death (ICD) at the tumor site. However, the development of tumor ISV still faces challenges due to insufficient tumor antigens released by tumor cells and the existence of tumor immunosuppressive microenvironment (TIME). Targeting the STING pathway has been reported to enhance the adjuvant effects of in situ tumor vaccines by initiating innate immunity.

View Article and Find Full Text PDF

Chitosan/octenyl succinic anhydride starch complex particles stabilize Pickering emulsion for astaxanthin encapsulation.

Int J Biol Macromol

January 2025

College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China.

The stabilizing effect of biopolymers on Pickering emulsions has attracted widespread interest in recent years. In this study, the interactions between chitosan (CS) and octenyl succinic anhydride starch (OS) were investigated and used to modulate the interfacial properties of Pickering emulsions, which are crucial for determining emulsion stability. CS/OS complex particles were prepared via electrostatic and hydrogen-bonding interactions and used to stabilize Pickering emulsions for the encapsulation of astaxanthin (AST).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!