A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Optimizing the metric in sensorless adaptive optical microscopy with fluorescence fluctuations. | LitMetric

AI Article Synopsis

  • Adaptive optics (AO) strategies using optimization-based, sensorless approaches are essential for enhancing microscopy, especially in fluorescence fluctuations microscopy, which suffers from optical aberrations.
  • The study compared two metrics for sensorless AO—fluorescence count rate and molecular brightness—in terms of their measurement noise and sensitivity to aberrations in a 3D solution of fluorophores.
  • Results indicate that for small aberrations, molecular brightness yields better corrections with fewer, brighter fluorophores, while for larger aberrations, the fluorescence count rate is more effective in achieving reliable corrections.

Article Abstract

Adaptive optics (AO) strategies using optimization-based, sensorless approaches are widely used, especially for microscopy applications. To converge rapidly to the best correction, such approaches require that a quality metric and a set of modes be chosen optimally. Fluorescence fluctuations microscopy, a family of methods that provides quantitative measurements of molecular concentration and mobility in living specimen, is in particular need of adaptive optics, since its results can be strongly biased by optical aberrations. We examined two possible metrics for sensorless AO, measured in a solution of fluorophores diffusing in 3D: the fluorescence count rate and the molecular brightness (or number of photons detected per molecule in the observation volume). We studied their respective measurement noise and sensitivity to aberrations. Then, AO correction accuracy was experimentally assessed by measuring the residual aberration after correcting a known wavefront. We proposed a theoretical framework to predict the correction accuracy, knowing the metric measurement noise and sensitivity. In the small aberration range, the brightness allows more accurate corrections when fluorophores are few but bright, whereas the count rate performs better in more concentrated solutions. When correcting large aberrations, the count rate is expected to be a more reliable metric.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.25.015558DOI Listing

Publication Analysis

Top Keywords

count rate
12
fluorescence fluctuations
8
adaptive optics
8
measurement noise
8
noise sensitivity
8
correction accuracy
8
optimizing metric
4
metric sensorless
4
sensorless adaptive
4
adaptive optical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!