Laser-induced damage with ps pulse widths straddles the transition from intrinsic, multi-photon ionization and avalanche ionization-based ablation with fs pulses to defect-dominated, thermal-based damage with ns pulses. We investigated the morphology of damage for fused silica and silica coatings between 1 ps and 60 ps at 1053 nm. Using calibrated laser-induced damage experiments, in situ imaging, and high-resolution optical microscopy, atomic force microscopy, and scanning electron microscopy, we show that defects play an important role in laser-induced damage down to 1 ps. Three types of damage are observed: ablation craters, ultra-high density pits, and smooth, circular depressions with central pits. For 10 ps and longer, the smooth, circular depressions limit the damage performance of fused silica and silica coatings. The observed high-density pits and material removal down to 3 ps indicate that variations in surface properties limit the laser-induced damage onset to a greater extent than expected below 60 ps. Below 3 ps, damage craters are smoother although there is still evidence as seen by AFM of inhomogeneous laser-induced damage response very near the damage onset. These results show that modeling the damage onset only as a function of pulse width does not capture the convoluted processes leading to laser induced damage with ps pulses. It is necessary to account for the effects of defects on the processes leading to laser-induced damage. The effects of isolated defects or inhomogeneities are most pronounced above 3 ps but are still discernible and possibly important down to the shortest pulse width investigated here.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.25.015161 | DOI Listing |
Adv Sci (Weinh)
December 2024
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province, 225000, P. R. China.
Chalcogenides are the most important infrared nonlinear optical (NLO) material candidates, and the exploration of high-performance ones is attractive and challengeable. Hitherto, there is no NLO scandium (Sc) chalcogenides experimentally studied. Here, new quaternary Sc thiophosphate CsScPS (CSPS) was synthesized by the facile metal oxide-boron-sulfur/reactive flux hybrid solid-state method.
View Article and Find Full Text PDFPolymers (Basel)
November 2024
Yantai Research Institute, Harbin Engineering University, Yantai 264000, China.
The poor interlaminar fracture toughness is a critical limiting factor for the structural applications of aramid fiber/epoxy resin composites. This study investigates the effects of laser-induced graphene (LIG) and short Kevlar fibers on the interfacial toughness and damage detection of aramid composite materials. Mode II tests and tensile tests were conducted to evaluate mechanical properties and damage detection using the piezoresistive characteristics of LIG.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
School of Materials Science and Engineering, Tianjin Key Lab for Rare Earth Materials and Applications, Smart Sensing Interdisciplinary Science Center, Renewable Energy Conversion and Storage Center (RECAST), National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China.
The nonlinear chiroptical properties of chiral metal halide perovskite has attracted substantial attention in recent years. In order to overcome the inherent limitations of metal halide, such as high costs, potential toxicity, challenges with recycling, especially the limited laser-induced damage threshold (LDT), we have successfully constructed the first chiral metal-free anti-perovskite, with the aim of utilizing it in second harmonic generation-circular dichroism (SHG-CD). Moreover, the anti-perovskite composed entirely of small organic ions typically display a more extensive transparent window, which could contribute a high LDT.
View Article and Find Full Text PDFNanophotonics
December 2023
Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, P.R. China.
The significance of ultrafast laser-induced energy and mass transfer at interfaces has been growing in the field of nanoscience and technology. Nevertheless, the complexity arising from non-linear and non-equilibrium optical-thermal-mechanical interactions results in intricate transitional behaviors. This complexity presents challenges when attempting to analyze these phenomena exclusively through modeling or experimentation.
View Article and Find Full Text PDFLasers Surg Med
November 2024
Maryland Laser, Skin, and Vein Institute, Hunt Valley, Maryland, USA.
Background: Prior studies have shown that energy-based devices (EBDs) over pre-injected hyaluronic acid (HA) fillers do not significantly affect clinical outcomes. However, the impact of EBDs over newly FDA-approved HA filler for improving skin smoothness is still undetermined.
Objective: To evaluate the immediate histologic changes after various popular EBDs are performed over pre-injected, newly FDA-approved intradermal HA filler.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!