Based on photon-phonon nonlinear interaction, a scheme of controllable photon-phonon converters is proposed at single-quantum level in a composed quadratically coupled optomechanical system. With the assistance of the mechanical oscillator, the Kerr nonlinear effect between photon and phonon is enhanced so that the single-photon state can be converted into the phonon state with high fidelity even under the current experimental condition that the single-photon coupling rate is much smaller than mechanical frequency (g ≪ ωm). The state transfer protocols and their transfer fidelity are discussed analytically and numerically. A multi-path photon-phonon converter is designed by combining the optomechanical system with low frequency resonators, which can be controlled by experimentally adjustable parameters. This work provides us a potential platform for quantum state transfer and quantum information.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.25.010779 | DOI Listing |
Light Sci Appl
January 2025
Department of Physics, Chalmers University of Technology, 412 96, Gothenburg, Sweden.
Nanostructured dielectric metasurfaces offer unprecedented opportunities to control light-matter momentum exchange, and thereby the forces and torques that light can exert on matter. Here we introduce optical metasurfaces as components of ultracompact untethered microscopic metaspinners capable of efficient light-induced rotation in a liquid environment. Illuminated by weakly focused light, a metaspinner generates torque via photon recoil through the metasurfaces' ability to bend light towards high angles despite their sub-wavelength thickness, thereby creating orbital angular momentum.
View Article and Find Full Text PDFSci Rep
January 2025
School of Physics and Optoelectronics, Xiangtan University, Xiangtan, 411105, China.
We introduce two strategies to enhance quantum synchronization within a triple-cavity optomechanical system, where each cavity contains an oscillator and is interconnected via optical fibers. Our results demonstrate that applying appropriate periodic modulation to the driving fields or the cavity modes can ensure robust quantum synchronization across both open and closed configurations. This approach offers promising avenues for expanding quantum synchronization capabilities in multi-cavity systems and has significant implications for advancing quantum synchronization generation and application in complex networks.
View Article and Find Full Text PDFLuminescence
December 2024
Department of Chemistry, Faculty of Science, Umm Al-Qura University, Makkah, Saudi Arabia.
This study investigates the optical, mechanical, and antimicrobial properties of polypropylene (PP) fibers enhanced with titanium dioxide (TiO) and zinc oxide (ZnO) nanoparticles. Using a Mach-Zehnder interferometric system, we examined the refractive indices, birefringence, and opto-mechanical behavior of blank PP, PP/TiO, and PP/ZnO nanocomposite fibers under various conditions, including different polarization orientations and during cold drawing processes. The 2D Fourier transform algorithm is employed to analyze interferometric data, enabling precise measurements of refractive index profiles and birefringence.
View Article and Find Full Text PDFScience
December 2024
Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
Collective phenomena arise from interactions within complex systems, leading to behaviors absent in individual components. Observing quantum collective phenomena with macroscopic mechanical oscillators has been impeded by the stringent requirement that oscillators be identical. We demonstrate the quantum regime for collective motion of = 6 mechanical oscillators, a hexamer, in a superconducting circuit optomechanical platform.
View Article and Find Full Text PDFHardwareX
December 2024
Department of Physics, Osnabrueck University, 49076 Osnabrueck, Germany.
In the context of experimental optics- and photonics-research, motorized, high-precision rotation stages are an integral part of almost every laboratory setup. Nevertheless, their availability in the laboratory is limited due to the relatively high acquisition costs in the range of several 1000€ and is often supplemented by manual rotation stages. If only a single sample is to be analyzed repeatedly at two different angles or the polarization of a laser source is to be rotated, this approach is understandable.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!