We address, in detail, the system of differential equations determining a freeform aplanatic system with illustrative examples. We also demonstrate how two optical surfaces, in general, are insufficient in achieving freeform aplanatism through the use of integrability condition for a given reflective freeform aplanatic configuration. This result also alludes to the fact that a freeform aplanatic system fulfills a broader set of conditions than its rotationally symmetric counterpart. We also elaborate on the above results with two illustrative examples (1) A semi aplanatic system which satisfies the generalized sine condition in only one direction and (2) A fully freeform aplanatic reflective system.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.25.010710DOI Listing

Publication Analysis

Top Keywords

freeform aplanatic
20
aplanatic system
12
illustrative examples
8
freeform
6
aplanatic
6
system
5
three surface
4
surface freeform
4
aplanatic systems
4
systems address
4

Similar Publications

To break through the limitations of the classical sine condition, a multi-field cosine condition (MCC) is proposed in this paper. Building on this condition, a design method for wide field-of-view (FOV) freeform aplanatic systems is also proposed. This design method ensures that the optical system meets the MCC by correcting the mapping relationships of rays that originate from different apertures on both the object and image sides of the optical system.

View Article and Find Full Text PDF

The present paper introduces a set of equations to design an aplanatic catadioptric freeform optical system. These equations form a partial differential equation system, in which a numerical solution defines the first and last surfaces of the catadioptric freeform optical system, composed of an arbitrary number of reflective/refractive surfaces with arbitrary shapes and orientations. The solution of the equation can serve as an initial setup of a more complex design that can be optimized.

View Article and Find Full Text PDF

The exact partial differential equation to design aplanatic freeform-mirror-based optical systems is presented. The partial differential equation is not limited by the number of freeform surfaces or their orientations. The solutions of this partial differential equation can be useful as initial setups that can be optimized to meet higher criteria.

View Article and Find Full Text PDF

Second-order semi-aplanatism provides better imaging quality along a line of the object plane close to a point than conventional aplanatic optics, which is of interest in applications with high aspect ratio sensors. Designing an optic with second-order semi-aplanatism requires the use of freeform surfaces, and can be done as a limit case of the SMS 3D design method applied to stigmatically image 3 collinear object points. The algorithm for this specific design problem is described and a lens example with 3 freeform surfaces is designed and analyzed.

View Article and Find Full Text PDF

We address, in detail, the system of differential equations determining a freeform aplanatic system with illustrative examples. We also demonstrate how two optical surfaces, in general, are insufficient in achieving freeform aplanatism through the use of integrability condition for a given reflective freeform aplanatic configuration. This result also alludes to the fact that a freeform aplanatic system fulfills a broader set of conditions than its rotationally symmetric counterpart.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!