Selective Laser Melting (SLM) of metal powder bed layers, whereby 3D metal objects can be printed from a digital file with unprecedented design flexibility, is spurring manufacturing innovations in medical, automotive, aerospace and textile industries. Because SLM is based on raster-scanning a laser beam over each layer, the process is relatively slow compared to most traditional manufacturing methods (hours to days), thus limiting wider spread use. Here we demonstrate the use of a large area, photolithographic method for 3D metal printing, using an optically-addressable light valve (OALV) as the photomask, to print entire layers of metal powder at once. An optical sheet of multiplexed ~5 kW, 20 ms laser diode and ~1 MW, 7 ns Q-switched laser pulses are used to selectively melt each layer. The patterning of near infrared light is accomplished by imaging 470 nm light onto the transmissive OALV, which consists of polarization-selective nematic liquid crystal sandwiched between a photoconductor and transparent conductor for switching.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.25.011788DOI Listing

Publication Analysis

Top Keywords

optically-addressable light
8
light valve
8
metal powder
8
layers metal
8
diode-based additive
4
additive manufacturing
4
manufacturing metals
4
metals optically-addressable
4
light
4
valve selective
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!