The self-assembly of small functional molecules into supramolecular structures is a powerful approach toward the development of new nanoscale materials and devices. As a class of self-assembled materials, low weight molecular organic gelators, organized in special nanoarchitectures through specific non-covalent interactions, has become one of the hot topics in soft matter research due to their scientific values and many potential applications. Here, a bolaform cholesteryl imide compound with conjugated aromatic spacer was designed and synthesized. The gelation behaviors in 23 solvents were investigated as efficient low-molecular-mass organic gelator. The experimental results indicated that the morphologies and assembly modes of as-formed organogels can be regulated by changing the kinds of organic solvents. Scanning electron microscopy and atomic force microscopy observations revealed that the gelator molecule self-assemble into different aggregates, from wrinkle and belt to fiber with the change of solvents. Spectral studies indicated that there existed different H-bond formations between imide groups and assembly modes. Finally, some rational assembly modes in organogels were proposed and discussed. The present work may give some insight to the design and character of new organogelators and soft materials with special structures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5452747 | PMC |
http://dx.doi.org/10.3390/ma6125893 | DOI Listing |
Spectrochim Acta A Mol Biomol Spectrosc
January 2025
Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 China; Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210 China. Electronic address:
Self-assembly plays a crucial role in the formation and allosteric processes of many biomolecules, water molecules can affect these processes. Cytosine (Cyt) has excellent self-assembly ability, forming a flat and ordered structure through hydrogen bonds (HBs) in the presence of water molecules. However, the vibration dynamics and interaction mechanism of water induced Cyt self-assembly are still unclear.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Industrial Chemistry and CECS Core Research Institute, Pukyong National University, Busan 48513, Republic of Korea.
Mater Horiz
January 2025
Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China.
Light-driven micromotors with multiple motion modes offer significantly greater application potential than single-mode micromotors. However, achieving such versatility often requires complex structural designs and precise light focusing on specific micromotor regions, presenting challenges for dynamic operations and microscale precisions. This study introduces programmable assemblies of anisotropic micromotors driven by the photothermal Marangoni effect, produced in bulk microfluidic technology.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada.
ConspectusStructural DNA nanotechnology offers a unique self-assembly toolbox to construct soft materials of arbitrary complexity, through bottom-up approaches including DNA origami, brick, wireframe, and tile-based assemblies. This toolbox can be expanded by incorporating interactions orthogonal to DNA base-pairing such as metal coordination, small molecule hydrogen bonding, π-stacking, fluorophilic interactions, or the hydrophobic effect. These interactions allow for hierarchical and long-range organization in DNA supramolecular assemblies through a DNA-minimal approach: the use of fewer unique DNA sequences to make complex structures.
View Article and Find Full Text PDFIntrinsically disordered proteins or regions (IDPs/IDRs) exist as ensembles of conformations in the monomeric state. Upon binding to a partner, they adopt various binding modes, ranging from becoming ordered upon binding, to binding in a multivalent manner, to remaining fuzzy in the bound state. Moreover, they can adopt different binding modes depending on the partner.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!