Ni- and Cu/alumina powders were prepared and characterized by X-ray diffraction (XRD), scanning electronic microscope (SEM), and N₂ physisorption isotherms were also determined. The Ni/Al₂O₃ sample reveled agglomerated (1 μm) of nanoparticles of Ni (30-80 nm) however, NiO particles were also identified, probably for the low temperature during the H reduction treatment (350 °C), the Cu/Al₂O₃ sample presented agglomerates (1-1.5 μm) of nanoparticles (70-150 nm), but only of pure copper. Both surface morphologies were different, but resulted in mesoporous material, with a higher specificity for the Ni sample. The surfaces were used in a new proposal for producing copper and nickel phthalocyanines using a parallel-plate reactor. Phthalonitrile was used and metallic particles were deposited on alumina in ethanol solution with CH₃ONa at low temperatures; ≤60 °C. The mass-transfer was evaluated in reaction testing with a recent three-resistance model. The kinetics were studied with a Langmuir-Hinshelwood model. The activation energy and Thiele modulus revealed a slow surface reaction. The nickel sample was the most active, influenced by the NiO morphology and phthalonitrile adsorption.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5452853 | PMC |
http://dx.doi.org/10.3390/ma6104324 | DOI Listing |
J Appl Crystallogr
October 2024
Université Paris-Saclay, CentraleSupélec, ENS Paris-Saclay, CNRS LMPS - Laboratoire de Mécanique Paris-Saclay, 91190Gif-sur-Yvette, France.
Water Res
November 2024
The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, PR China. Electronic address:
Sci Rep
January 2024
Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
Petrochemicals require a large volume of water for their operation, which results in the production of a large volume of wastewater. Treatment of petrochemical wastewater is an important process before discharging it into the environment. This research examines the treatment of real petrochemical wastewater using the electrochemical oxidation process.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
October 2023
Research Group On Environmental Applications of Advanced Oxidation Processes (GruPOA), Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, Minas Gerais, 31270-901, Brazil.
This manuscript critically reviews the state of the art on the application of photo-Fenton processes irradiated by light-emitting diode arrays (LED) with a focus on the removal of contaminants of emerging concern (CEC) from aqueous matrices. LEDs are clean, low-cost radiation sources with longer lifespan compared to mercury lamps. This study covers the influence of LED sources, wavelengths, and dose upon CEC removal, and the potential for disinfection, abatement of antibiotic-resistant bacteria (ARB), and genes (ARG).
View Article and Find Full Text PDFMikrochim Acta
September 2023
Faculty of Process and Environmental Engineering, Department of Molecular Engineering, Lodz University of Technology, Wólczańska 213, 93-005, Lodz, Poland.
A original electrochemical sensing platform, based on screen-printed electrodes modification with plasma polymerized acrylonitrile (pp-AN) nanofilms is proposed. For that purpose, plasma-enhanced chemical vapor deposition (PECVD) process was conducted in a parallel plate (13.56 MHz) plasma reactor for 2 min with discharge power of 10 W.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!