In the most recent decades the introduction of unconventional machining processes allowed the development of micromachining techniques. In this work, the influence of material microstructures on the micromilling process was investigated. Ti6Al4V alloy was selected as workpiece material since it is a very common material for micro applications and because its duplex microstructure can be easily changed by proper thermal treatments. Four different microstructures (namely bimodal, fully equiaxed, fully lamellar and mill annealed) were obtained through recrystallization annealing treatments carried out at different times and temperatures. The mechanical properties of the samples were assessed by microhardness measurements. Nano-indentations were also performed on single grains to understand how the different hardness of phases and structures present in the Ti6Al4V alloy can affect the micromilling process. Microchannels using two flute flat end mills with a diameter equal to 200 µm were realized on the treated samples. Two different feed-per-tooth values were used during the tests. Cutting force, channel shape and burr dimension were investigated. Morphological and energy dispersive spectroscopy (EDS) analyses were performed on tools by means of a scanning electron microscope (SEM): in this way the phenomena mainly influencing the tool status were also identified. Lower cutting forces and reduced tool wear were observed when working fully lamellar microstructures compared to the other ones.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5452673 | PMC |
http://dx.doi.org/10.3390/ma6094268 | DOI Listing |
Micromachines (Basel)
November 2024
Key Laboratory of Rapid Development & Manufacturing Technology for Aircraft, Shenyang Aerospace University, Ministry of Education, Shenyang 110136, China.
In Ti-6Al-4V titanium alloy micro-machining, since the uncut chip thickness (UCT) is comparable to the radius of the tool cutting edge, there exists a minimum uncut chip thickness (MUCT), and when the UCT is smaller than the MUCT, the plowing effect dominates the cutting process, which seriously affects the machined surface quality and tool life. Therefore, the reliable prediction of the MUCT is of great significance. This paper used Deform to establish an orthogonal cutting simulation model, studied the effect of the dead metal zone (DMZ) on the micro-cutting material flow, determined the DMZ range, and proposed a new method for determining the MUCT based on the DMZ.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-103 Warszawa, Poland.
This paper presents the results of research on the kinetics of transformations in the two-phase (α + β) Ti-6Al-4V alloy. The transformation start and end temperatures during heating at different rates were determined using a dilatometer. A modified dilatometer was employed, equipped with an acoustic emission measurement apparatus and software enabling the assessment of sample dimensional changes during heating and cooling.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
China International Science & Technology Cooperation Base for Laser Processing Robotics, College of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou 325035, China.
In this work, Ti6Al4V-Cu alloys with different Cu contents (2.4 and 7.9 wt.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Production Engineering, Mechanical Engineering Faculty, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland.
The use of the minimum quantity lubrication (MQL) method during machining leads to the reduced consumption of cooling and lubricating liquids, thus contributing to sustainable machining. To improve the properties of liquids used under MQL conditions, they are enriched with various types of micro- and nanoparticles. The purpose of this study was to investigate the effect of the addition of graphite micropowder (GMP) on tool life, cutting force components, and selected surface roughness parameters during the finish turning of the Ti-6Al-4V titanium alloy under MQL conditions.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi' an Jiaotong University, Xi' an, 710004, China.
The regulation of the charged microenvironment around implants is an effective way to promote osseointegration. Although homeostasis of the charged microenvironment plays an integral role in tissues, current research is externally invasive and unsuitable for clinical applications. In this study, functional materials with different surface potential differences are prepared by changing the spatial layout of Ta and Ag on the surface of a Ti-6Al-4V alloy (TC4).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!