Photonic Bandgap Propagation in All-Solid Chalcogenide Microstructured Optical Fibers.

Materials (Basel)

Glasses and Ceramics Group, Institut des Sciences Chimiques de Rennes, University of Rennes 1, 35042 Rennes Cedex, France.

Published: August 2014

An original way to obtain fibers with special chromatic dispersion and single-mode behavior is to consider microstructured optical fibers (MOFs). These fibers present unique optical properties thanks to the high degree of freedom in the design of their geometrical structure. In this study, the first all-solid all-chalcogenide MOFs exhibiting photonic bandgap transmission have been achieved and optically characterized. The fibers are made of an AsSe matrix, with inclusions of TeAsSe glass that shows a higher refractive index ( = 2.9). In those fibers, several transmission bands have been observed in mid infrared depending on the geometry. In addition, for the first time, propagation by photonic bandgap effect in an all-chalcogenide MOF has been observed at 3.39 µm, 9.3 µm, and 10.6 µm. The numerical simulations based on the optogeometric properties of the fibers agree well with the experimental characterizations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5456136PMC
http://dx.doi.org/10.3390/ma7096120DOI Listing

Publication Analysis

Top Keywords

photonic bandgap
12
microstructured optical
8
optical fibers
8
fibers
7
bandgap propagation
4
propagation all-solid
4
all-solid chalcogenide
4
chalcogenide microstructured
4
fibers original
4
original fibers
4

Similar Publications

TiO has broad prospects in reducing the safety risks posed by emerging pollutants in water environments. However, the high recombination rate of photogenerated carriers limits the activity and photon utilization efficiency of TiO. In this study, mesoporous TiO (m-TiO) and ultra-thin g-CN nanosheets were composited using a hydrothermal method, with the m-TiO tightly and uniformly wrapped by g-CN.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how varying concentrations of Zn ions affect the optical properties of BaNiZnFeO ferrites, showcasing the ability to tune the band gap through Zn doping.
  • X-ray diffraction (XRD) confirmed that the material maintained a single-phase structure and exhibited changes in grain size and lattice parameters with increased Zn content.
  • UV-visible spectroscopy demonstrated that the band gap and electrical properties improved with higher Zn concentrations, indicating potential uses in optoelectronics and energy storage applications.
View Article and Find Full Text PDF

Monolayer transition metal dichalcogenides are promising materials that not only are atomically thin but also have direct bandgaps, making them highly regarded in optics and optoelectronics. However, their photoluminescence exhibits almost random polarization at room temperature. The emission is also omnidirectional and weak due to the low quantum yield.

View Article and Find Full Text PDF

Solar photovoltaic (PV) conversion has become a key area in today's energy supply. However, incomplete utilization of the PV cell bandgap results in the conversion of photon energy outside the bandgap into waste heat, reducing the overall efficiency. Improving spectral utilization efficiency and mitigating the effects of PV waste heat are top priorities.

View Article and Find Full Text PDF
Article Synopsis
  • The study presents a method for creating twisted helical cellulose nanocrystal films using 3D printing, achieving unique optical properties.
  • The films exhibit high transparency and dual circular polarization, with different types depending on the printing orientation.
  • These materials have potential applications in photonics, thermal management, and energy efficiency due to their ability to manipulate light in the near-infrared region.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!