To follow up the restenosis in arteries stented during an angioplasty is an important current clinical problem. A new approach to monitor the growth of neointimal tissue inside the stent is proposed on the basis of electrical impedance spectroscopy (EIS) sensors and the oscillation-based test (OBT) circuit technique. A mathematical model was developed to analytically describe the histological composition of the neointima, employing its conductivity and permittivity data. The bioimpedance model was validated against a finite element analysis (FEA) using COMSOL Multiphysics software. A satisfactory correlation between the analytical model and FEA simulation was achieved in most cases, detecting some deviations introduced by the thin "double layer" that separates the neointima and the blood. It is hereby shown how to apply conformal transformations to obtain bioimpedance electrical models for stack-layered tissues over coplanar electrodes. Particularly, this can be applied to characterize the neointima in real-time. This technique is either suitable as a main mechanism for restenosis follow-up or it can be combined with proposed intelligent stents for blood pressure measurements to auto-calibrate the sensibility loss caused by the adherence of the tissue on the micro-electro-mechanical sensors (MEMSs).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5579752 | PMC |
http://dx.doi.org/10.3390/s17081737 | DOI Listing |
J Cardiothorac Surg
January 2025
The First Department of Cardiology, Beidahuang Industry Group General Hospital, Harbin, 150000, Heilongjiang Province, China.
Objective: it was to evaluate the efficacy and safety of rapamycin-eluting stents at different doses in the treatment of coronary artery narrowing in miniature pigs.
Methods: a total of 20 miniature pigs were randomly assigned into four groups: S1 group (low-dose rapamycin-coated stent, 55 µg/mm), S2 group (medium-dose rapamycin-coated stent, 120 µg/mm), S3 group (high-dose rapamycin-coated stent, 415 µg/mm), and D0 group (bare metal stent). The stent size was 3.
Arthritis Res Ther
January 2025
Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
Background: Advances in treatment have swiftly alleviated systemic inflammation of Takayasu's arteritis (TAK), while subclinical vascular inflammation and the ensuing arterial remodeling continue to present unresolved challenges in TAK. The phenotypic switching of vascular smooth muscle cells (VSMC) is regarded as the first step in vascular pathology and contributes to arterial remodeling. Exosomes facilitate the transfer and exchange of proteins and specific nucleic acids, thereby playing a significant role in intercellular communication.
View Article and Find Full Text PDFJ Mater Sci Mater Med
January 2025
Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, PR China.
In-stent restenosis (ISR) following interventional therapy is a fatal clinical complication. Current evidence indicates that neointimal hyperplasia driven by uncontrolled proliferation of vascular smooth muscle cells (VSMC) is a major cause of restenosis. This implies that inhibiting VSMC proliferation may be an attractive approach for preventing in-stent restenosis.
View Article and Find Full Text PDFChin Med
January 2025
Aging and Metabolism Research Group, Korea Food Research Institute, Wanju‑gun, 55365, Republic of Korea.
Background: Magnolia kobus DC (MO), as a plant medicine, has been reported to have various physiological activities, including neuroprotective, anti-inflammatory, and anti-diabetic effects. However, vascular protective effects of MO remain incompletely understood. In this study, we evaluated the vascular protective effect of MO against ferroptosis in a carotid artery ligation (CAL)-induced neointimal hyperplasia mouse model and in aortic thoracic smooth muscle A7r5 cells.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
February 2025
Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan.
It has been proposed that bone marrow contributes to the pathogenesis of arteriosclerosis. Nerve growth factor receptor (NGFR) is expressed in bone marrow stromal cells; it is also present in peripheral blood and ischemic coronary arteries. We hypothesized that bone marrow-derived NGFR-positive (NGFR) cells regulate arterial remodeling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!