Misfit Layer Compounds and Ferecrystals: Model Systems for Thermoelectric Nanocomposites.

Materials (Basel)

Department of Chemistry and Materials Science Institute, University of Oregon, 1253 University of Oregon, Eugene, OR 97403, USA.

Published: April 2015

A basic summary of thermoelectric principles is presented in a historical context, following the evolution of the field from initial discovery to modern day high-zT materials. A specific focus is placed on nanocomposite materials as a means to solve the challenges presented by the contradictory material requirements necessary for efficient thermal energy harvest. Misfit layer compounds are highlighted as an example of a highly ordered anisotropic nanocomposite system. Their layered structure provides the opportunity to use multiple constituents for improved thermoelectric performance, through both enhanced phonon scattering at interfaces and through electronic interactions between the constituents. Recently, a class of metastable, turbostratically-disordered misfit layer compounds has been synthesized using a kinetically controlled approach with low reaction temperatures. The kinetically stabilized structures can be prepared with a variety of constituent ratios and layering schemes, providing an avenue to systematically understand structure-function relationships not possible in the thermodynamic compounds. We summarize the work that has been done to date on these materials. The observed turbostratic disorder has been shown to result in extremely low cross plane thermal conductivity and in plane thermal conductivities that are also very small, suggesting the structural motif could be attractive as thermoelectric materials if the power factor could be improved. The first 10 compounds in the [(PbSe)1+δ]m(TiSe2)n family (m, n ≤ 3) are reported as a case study. As n increases, the magnitude of the Seebeck coefficient is significantly increased without a simultaneous decrease in the in-plane electrical conductivity, resulting in an improved thermoelectric power factor.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5507028PMC
http://dx.doi.org/10.3390/ma8042000DOI Listing

Publication Analysis

Top Keywords

misfit layer
12
layer compounds
12
improved thermoelectric
8
plane thermal
8
power factor
8
compounds
5
thermoelectric
5
compounds ferecrystals
4
ferecrystals model
4
model systems
4

Similar Publications

A possibility of unprecedented architecture may be opened up by combining both vertical and in-plane heterostructures. It is fascinating to discover that the interlayer stress transfer, interlayer binding energy, and interlayer shear stress of bi-layer Gr/hBN with CNTs heterostructures greatly increase (more than 2 times) with increase the numbers of CNTs and both saturate at the numbers of CNTs = 3, but it causes only 10.92% decrease in failure strain.

View Article and Find Full Text PDF

Coherent phase transformations in interstitial solid solutions or intercalation compounds with a miscibility gap are of practical relevance for energy storage materials and specifically for metal hydride or lithium-ion compound nanoparticles. Different conclusions on the size-dependence of the transformation conditions are reached by modeling or theory focusing on the impact of either one (internal, solid-state-) critical-point wetting of the nanoparticle surface or coherency constraints from solute-saturated surface layers. We report a hybrid numerical approach, combining atomistic grand canonical Monte Carlo simulation with a continuum mechanics analysis of coherency stress and modeling simultaneously wetting and mechanical constraints.

View Article and Find Full Text PDF

GaAs Solar Cells Grown Directly on V-Groove Si Substrates.

ACS Appl Mater Interfaces

January 2025

National Renewable Energy Laboratory, Golden, Colorado 80401, United States.

The direct epitaxial growth of high-quality III-V semiconductors on Si is a challenging materials science problem with a number of applications in optoelectronic devices, such as solar cells and on-chip lasers. We report the reduction of dislocation density in GaAs solar cells grown directly on nanopatterned V-groove Si substrates by metal-organic vapor-phase epitaxy. Starting from a template of GaP on V-groove Si, we achieved a low threading dislocation density (TDD) of 3 × 10 cm in the GaAs by performing thermal cycle annealing of the GaAs followed by growth of InGaAs dislocation filter layers.

View Article and Find Full Text PDF

Tailoring the Interfacial Composition of Heterostructure InP Quantum Dots for Efficient Electroluminescent Devices.

Small Methods

December 2024

Division of Materials Science and Engineerin, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.

The formation of core-shell quantum dots (QDs) with type-I band alignment results in surface passivation, ensuring the efficient confinement of excitons for light-emitting applications. In such cases, the atomic composition at the core-shell heterojunction significantly affects the optical, and electrical properties of the QDs. However, for InP cores, shell materials are limited to compositions consisting of II-VI group elements.

View Article and Find Full Text PDF

Van der Waals heteroepitaxy refers to the growth of strain- and misfit-dislocation-free epitaxial films on layered substrates or vice versa. Such heteroepitaxial technique can be utilized in developing flexible near-infrared transition metal nitride plasmonic materials to broaden their photonic and bioplasmonic applications, such as antifogging, smart windows, and bioimaging. Here, we show the first conclusive experimental demonstration of the van der Waals heteroepitaxy-enabled flexible semiconducting scandium nitride (ScN) thin films exhibiting near-infrared, low-loss epsilon-near-zero, and surface plasmon-polariton resonances.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!