Conductive Polymer Porous Film with Tunable Wettability and Adhesion.

Materials (Basel)

School of Chemistry and Environment, Beihang University, Beijing 100191, China.

Published: April 2015

A conductive polymer porous film with tunable wettability and adhesion was fabricated by the chloroform solution of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyricacid-methyl-ester (PCBM) via the freeze drying method. The porous film could be obtained from the solution of 0.8 wt%, whose pore diameters ranged from 50 nm to 500 nm. The hydrophobic porous surface with a water contact angle (CA) of 144.7° could be transferred into a hydrophilic surface with CA of 25° by applying a voltage. The water adhesive force on the porous film increased with the increase of the external voltage. The electro-controllable wettability and adhesion of the porous film have potential application in manipulating liquid collection and transportation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5507056PMC
http://dx.doi.org/10.3390/ma8041817DOI Listing

Publication Analysis

Top Keywords

porous film
20
wettability adhesion
12
conductive polymer
8
polymer porous
8
film tunable
8
tunable wettability
8
porous
6
film
5
adhesion conductive
4
adhesion fabricated
4

Similar Publications

Utilising terahertz pulsed imaging to analyse the anhydrous-to-hydrate transformation of excipients during immediate release film coating hydration.

Int J Pharm

December 2024

Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK. Electronic address:

Pharmaceutical tablets are routinely film-coated to improve appearance, reduce medication errors and enhance storage stability. Terahertz pulsed imaging (TPI) can be utilised to study the liquid penetration into the porous tablet matrix in real time. Using polymer-coated flat-faced tablets with anhydrous lactose or mannitol, we show that when the tablet matrix contains anhydrous material, the anhydrous form transforms to the solid-state hydrate form in the tablet core while the immediate release coating dissolves.

View Article and Find Full Text PDF

Spatiotemporal Spectroscopy of Fast Excited-State Diffusion in 2D Covalent Organic Framework Thin Films.

J Am Chem Soc

January 2025

Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Butenandtstraße 5-13, Munich 81377, Germany.

Covalent organic frameworks (COFs), crystalline and porous conjugated structures, are of great interest for sustainable energy applications. Organic building blocks in COFs with suitable electronic properties can feature strong optical absorption, whereas the extended crystalline network can establish a band structure enabling long-range coherent transport. This peculiar combination of both molecular and solid-state materials properties makes COFs an interesting platform to study and ultimately utilize photoexcited charge carrier diffusion.

View Article and Find Full Text PDF

Implantation of a mesh loaded with mesenchymal stem cells (MSCs) is a common approach for the treatment of pelvic organ prolapse (POP). The mesh provides effective support to pelvic floor, enhancing muscle contraction of pelvic organs while reducing inflammation. In this study, a fully degradable mesh is designed for the treatment of POP, utilizing MSCs stimulated by a galvanic battery-powered electric field.

View Article and Find Full Text PDF

Efficient Strategy for Protein Drug Carrier Design for Insights into the Protein-Polyelectrolyte Interaction.

Langmuir

January 2025

State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, People's Republic of China.

The protein carrier and encapsulation system based on polyelectrolytes plays crucial roles in drug research and development. Traditional methods such as isothermal titration calorimetry and molecular dynamics simulation have illuminated parts of this complex relationship. However, they fall short of capturing the full picture of the interaction during the carrier's fabrication and protein loading dynamics.

View Article and Find Full Text PDF

Mass Transfer-Reaction Modeling of CO Capture Mediated by Immobilized Carbonic Anhydrase Enzyme on Multiscale Supporting Structures.

Environ Sci Technol

January 2025

Zhejiang Key Laboratory of Clean Energy Conversion and Utilization, Science and Education Integration College of Energy and Carbon Neutralization, Zhejiang University of Technology, Hangzhou 310014, China.

Article Synopsis
  • Immobilized carbonic anhydrase (CA) enhances CO absorption in potassium carbonate (PC) solutions, presenting a viable alternative to traditional amine-based carbon capture methods.
  • The study developed cross-scale models to assess how different enzyme immobilization materials—ranging from nanoparticle to macro-scale carriers—affect CO absorption rates, finding that nanoscale carriers are most effective.
  • While increasing enzyme activity can boost absorption rates, diffusion limits, particularly in the liquid phase, impose an upper limit to this enhancement, and smaller particle sizes below 0.35 μm significantly improve performance over benchmark solutions.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!