Photovoltaic and Impedance Spectroscopy Study of Screen-Printed TiO₂ Based CdS Quantum Dot Sensitized Solar Cells.

Materials (Basel)

Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.

Published: January 2015

Cadmium sulphide (CdS) quantum dot sensitized solar cells (QDSSCs) based on screen-printed TiO₂ were assembled using a screen-printing technique. The CdS quantum dots (QDs) were grown by using the Successive Ionic Layer Adsorption and Reaction (SILAR) method. The optical properties were studied by UV-Vis absorbance spectroscopy. Photovoltaic characteristics and impedance spectroscopic measurements of CdS QDSSCs were carried out under air mass 1.5 illuminations. The experimental results of capacitance against voltage indicate a trend from positive to negative capacitance because of the injection of electrons from the Fluorine doped tin oxide (FTO) electrode into TiO₂.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5455228PMC
http://dx.doi.org/10.3390/ma8010355DOI Listing

Publication Analysis

Top Keywords

cds quantum
12
screen-printed tio₂
8
quantum dot
8
dot sensitized
8
sensitized solar
8
solar cells
8
photovoltaic impedance
4
impedance spectroscopy
4
spectroscopy study
4
study screen-printed
4

Similar Publications

While CuS/TiO₂ has been previously synthesized and employed in a limited number of photodegradation studies, the current study investigated its effectiveness for TC degradation under UV-visible light irradiation. CuS is known to be a nontoxic, environmentally friendly material; hence, it has great potential as an alternative to CdS and CdSe, which are used conventionally as sensitizers. In this work, the CuS/TiO₂ photocatalysts achieved a maximum 95 % removal of TC at an initial concentration of 20 ppm, confirming the good utilization of active sites.

View Article and Find Full Text PDF

Optical Properties of Phenylthiolate-Capped CdS Nanoparticles.

J Phys Chem C Nanomater Interfaces

January 2025

Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.

Using many-body perturbation theory, we study the optical properties of phenylthiolate-capped cadmium sulfide nanoparticles to understand the origin of the experimentally observed blue shift in those properties with decreasing particle size. We show that the absorption spectra predicted by many-body perturbation theory agree well with the experimentally measured spectra. The results of our calculations demonstrate that all low-energy excited states correspond to a mixture of two fundamental types of excitations: intraligand and ligand-to-metal charge-transfer excitations.

View Article and Find Full Text PDF

A ratiometric fluorescent nanoprobe (CDs-Rho), synthesized through the simple covalent amide linkage between carbon dots (CDs) and pH-sensitive rhodamine dye (Rho), was designed for the precise sensing and imaging of extremely alkaline environments. The sensing mechanism involves the opposite pH-dependent fluorescence changes in CDs and Rho, respectively, coupled with pH-regulated FRET efficiency from CDs to Rho. The nanoprobe features a wide pH response window from pH 7.

View Article and Find Full Text PDF

The use of biomass feedstocks for producing high-value-added chemicals is gaining significant attention in the academic community. In this study, near-infrared carbon dots (NIR-CDs) with antimicrobial and bioimaging functions were prepared from branches and leaves using a novel green synthesis approach. The spectral properties of the synthesized NIR-CDs were characterized by ultraviolet-visible (UV-Vis) absorption and fluorescence spectroscopy.

View Article and Find Full Text PDF

Elevated dopamine (DA) levels in urine denote neuroblastoma, a pediatric cancer. Saccharide-derived carbon dots (CDs) were applied to assay DA detection in simulated urine (SU) while delineating the effects of graphene defect density on electrocatalytic activity. CDs were hydrothermally synthesized to vary graphene defect densities using sucrose, raffinose, and palatinose, depositing them onto glassy carbon electrodes (GCEs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!