Structure and Compressive Properties of Invar-Cenosphere Syntactic Foams.

Materials (Basel)

Department of Mechanical Engineering, Al-Azhar University, Cairo 11651, Egypt.

Published: February 2016

The present study investigates the mechanical performance of syntactic foams produced by means of the metal powder injection molding process having an Invar (FeNi36) matrix and including cenospheres as hollow particles at weight fractions (wt.%) of 5 and 10, respectively, corresponding to approximately 41.6 and 60.0 vol.% in relation to the metal content and at 0.6 g/cm³ hollow particle density. The synthesis process results in survival of cenospheres and provides low density syntactic foams. The microstructure of the materials is investigated as well as the mechanical performance under quasi-static and high strain rate compressive loads. The compressive stress-strain curves of syntactic foams reveal a continuous strain hardening behavior in the plastic region, followed by a densification region. The results reveal a strain rate sensitivity in cenosphere-based Invar matrix syntactic foams. Differences in properties between cenosphere- and glass microsphere-based materials are discussed in relation to the findings of microstructural investigations. Cenospheres present a viable choice as filler material in iron-based syntactic foams due to their higher thermal stability compared to glass microspheres.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5456466PMC
http://dx.doi.org/10.3390/ma9020115DOI Listing

Publication Analysis

Top Keywords

syntactic foams
24
mechanical performance
8
strain rate
8
syntactic
6
foams
6
structure compressive
4
compressive properties
4
properties invar-cenosphere
4
invar-cenosphere syntactic
4
foams study
4

Similar Publications

The effect of unintended porosity on the first compressive stress maximum of alumina hollow sphere-filled bimodal composite metal foams.

Heliyon

October 2024

Department of Materials Science and Engineering, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Műegyetem Rkp. 3., H-1111, Budapest, Hungary.

Bimodal composite metal foams made from Al99.5 aluminium and quasi-eutectic Sr-modified AlSi12 matrix were investigated, where the bimodality was introduced by two alumina hollow sphere sets with nominal diameters of Ø7.0 and Ø2.

View Article and Find Full Text PDF

Hollow microspheres as the filler material of syntactic foams have been adopted in extensive practical applications, where the physical parameters and their homogeneity have been proven to be critical factors during the design process, especially for high-specification scenarios. Based on double-emulsion droplet templates, hollow microspheres derived from microfluidics-enabled soft manufacturing have been validated to possess well-controlled morphology and composition with a much narrower size distribution and fewer defects compared to traditional production methods. However, for more stringent requirements, the innate density difference between the core-shell solution of the double-emulsion droplet template shall result in the wall thickness heterogeneity of the hollow microsphere, which will lead to unfavorable mechanical performance deviations.

View Article and Find Full Text PDF

On Lightweight Shape Memory Vitrimer Composites.

ACS Appl Polym Mater

January 2024

Department of Mechanical & Industrial Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States.

Lightweight materials are highly desired in many engineering applications. A popular approach to obtain lightweight polymers is to prepare polymeric syntactic foams by dispersing hollow particles, such as hollow glass microbubbles (HGMs), in a polymer matrix. Integrating shape memory vitrimers (SMVs) in fabricating these syntactic foams enhances their appeal due to the multifunctionality of SMVs.

View Article and Find Full Text PDF

This paper reports the study of hollow microballoon-filled epoxy composites also known as syntactic foams with various volume fractions of microballoons. Different mechanical and thermomechanical investigations were carried out to study the elastic and viscoelastic behavior of these foams. The density, void content, and microstructure of these materials were also studied for better characterization.

View Article and Find Full Text PDF

Syntactic foams with low density as well as low thermal conduction and proper mechanical performance are vitally important for aerospace, marine, and automotive industries. Here, phenolic-based syntactic foams were fabricated by combining the hollow glass microsphere (GMs) with phenolic resin of synthesis. Benefited from the stirring and hot-pressing treatment, microspheres dispersed homogeneously in the resin matrix and it greatly reduced the density of the composites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!