The development of highly stable and efficient electrocatalysts for sluggish oxygen reduction reaction (ORR) is exceedingly significant for the commercialization of fuel cells but remains a challenge. We here synthesize a new nitrogen-doped biocarbon composite material (N-BC@CNP-900) as a nitrogen-containing carbon-based electrocatalyst for the ORR via facile all-solid-state multi-step pyrolysis of bioprotein-enriched enoki mushroom as a starting material, and inexpensive carbon nanoparticles as the inserting matrix and conducting agent at controlled temperatures. Results show that the N-BC@CNP-900 catalyst exhibits the best ORR electrocatalytic activity with an onset potential of 0.94 V ( reversible hydrogen electrode, RHE) and high stability. Meanwhile, this catalyst significantly exhibits good selectivity of the four-electron reaction pathway in an alkaline electrolyte. It is notable that pyridinic- and graphtic-nitrogen groups that play a key role in the enhancement of the ORR activity may be the catalytically active structures for the ORR. We further propose that the pyridinic-nitrogen species can mainly stabilize the ORR activity and the graphitic-nitrogen species can largely enhance the ORR activity. Besides, the addition of carbon support also plays an important role in the pyrolysis process, promoting the ORR electrocatalytic activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5456573PMC
http://dx.doi.org/10.3390/ma9010001DOI Listing

Publication Analysis

Top Keywords

orr activity
12
highly stable
8
oxygen reduction
8
orr
8
catalyst exhibits
8
orr electrocatalytic
8
electrocatalytic activity
8
activity
5
edible mushroom-derived
4
mushroom-derived renewable
4

Similar Publications

Tuning the spin state of the iron center by FePc/Mg(OH) heterojunction boosting oxygen reduction performance.

J Colloid Interface Sci

January 2025

National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130 PR China. Electronic address:

Iron phthalocyanine (FePc) is a promising non-noble metal catalyst for oxygen reduction reaction (ORR). While, with the plane-symmetric FeN site, the ORR activity of FePc is generally low due to its low ability to adsorb and activate O. Herein, we anchor FePc on Mg(OH)/N-doped carbon nanosheets building the ternary plate-like catalyst FePc/Mg(OH)/NC.

View Article and Find Full Text PDF

Conventional versus Unconventional Oxygen Reduction Reaction Intermediates on Single Atom Catalysts.

ACS Appl Mater Interfaces

January 2025

Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, Barcelona 08028, Spain.

The oxygen reduction reaction (ORR) stands as a pivotal process in electrochemistry, finding applications in various energy conversion technologies such as fuel cells, metal-air batteries, and chlor-alkali electrolyzers. Hereby, a comprehensive density functional theory (DFT) investigation is presented into the proposed conventional and unconventional ORR mechanisms using single-atom catalysts (SACs) supported on nitrogen-doped graphene (NG) as model systems. Several reaction intermediates have been identified that appear to be more stable than the ones postulated in the conventional mechanism, which follows the *OOH, *O, and *OH intermediates.

View Article and Find Full Text PDF

Innovative strategies for designing and constructing efficient fuel cell electrocatalysts.

Chem Commun (Camb)

January 2025

School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China.

Polymer electrolyte membrane fuel cells (PEMFCs) are one of the most promising energy conversion devices due to their high efficiency and zero emission; however, two major challenges, high cost and short lifetime, have been hindering the commercialization of fuel cells. Achieving low-Pt or non-precious metal oxygen reduction reaction (ORR) electrocatalysts is one of the main research ideas in this field. In this review, the degradation mechanism of Pt-based catalysts is firstly explained and elucidated, and then five strategies are suggested for the reduction of Pt usage without loss of activity and durability: modulation of metal-support interactions, optimization of local ionomers and mass transport, modulation of composition, modulation of structure, and multi-site synergistic effects.

View Article and Find Full Text PDF

Hydrogen peroxide (HO) electrosynthesis via the 2e oxygen reduction reaction (ORR) is considered as a cost-effective and safe alternative to the energy-intensive anthraquinone process. However, in more practical environments, namely, the use of neutral media and air-fed cathode environments, slow ORR kinetics and insufficient oxygen supply pose significant challenges to efficient HO production at high current densities. In this work, mesoporous B-doped carbons with novel curved BC active sites, synthesized via a carbon dioxide (CO) reduction using a pore-former agent, to simultaneously achieve excellent 2e ORR activity and improved mass transfer properties are introduced.

View Article and Find Full Text PDF

Single-atom catalysts (SACs) with high activity and efficient atom utilization for oxygen reduction reactions (ORRs) are imperative for rechargeable Zinc-air batteries (ZABs). However, it is still a prominent challenge to construct a noble-metal-free SAC with low cost but high efficiency. Herein, a novel nitrogen-doped graphene (NrGO) based SAC, immobilized with atomically dispersed single cobalt (Co) atoms (Co-NrGO-SAC), is reported for ORRs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!