In a marine green starch-producing microalga Tetraselmis subcordiformis, the role of starch phosphorylase (SP) in the starch biosynthesis was disclosed by characterizing the enzyme properties and activity variations during the starch accumulation process. TsSP4, a SP isoform accounting for the major SP activity in T. subcordiformis, was unique to be active in a monomer form with a molecular weight of approximately 110kDa. It resembled one of the chloroplast-located SPs (PhoA) in Chlamydomonas reinhardtii with a similarity of 63.3% in sequence, though it possessed the typical L78/80 domain found in the plastidial SPs (Pho1) of higher plants that was absent in PhoA. TsSP4 exhibited moderate sensitivity to ADP-Glc inhibition and had a high activity for longer-chain linear maltooligosacchride (MOS) and amylopectin against highly branched glycogen as the substrates. TsSP4 had 2-fold higher affinity for Glc-1-P in the synthetic direction than for Pi in the phosphorolytic direction, and the catalytic constant k for Glc-1-P was 2-fold of that for Pi. Collectively, TsSP4 preferred synthetic rather than phosphorolytic direction. TsSP4 could elongate MOSs even initially with Pi alone in the absence of Glc-1-P, which further supported its synthetic role in the starch biosynthesis. TsSP4 displayed increased activities in the developing and mature stage of starch biosynthesis under nitrogen-starvation conditions, indicating its possible contribution to the amylopectin amplification.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jplph.2017.07.019 | DOI Listing |
Sci Rep
January 2025
ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
The mutant waxy allele (wx1) is responsible for increased amylopectin in maize starch, with a wide range of food and industrial applications. The amino acid profile of waxy maize resembles normal maize, making it particularly deficient in lysine and tryptophan. Therefore, the present study explored the combined effects of genes governing carbohydrate and protein composition on nutritional profile and kernel physical properties by crossing Quality Protein Maize (QPM) (o2o2/wx1wx1) and waxy (o2o2/wx1wx1) parents.
View Article and Find Full Text PDFPlanta
January 2025
Department of Biomedical Engineering and Science, Florida Institute of Technology, Melbourne, FL, 32901, USA.
The starch-statolith theory was established science for a century when the existence of gravitropic, starchless mutants questioned its premise. However, detailed kinetic studies support a statolith-based mechanism for graviperception. Gravitropism is the directed growth of plants in response to gravity, and the starch-statolith hypothesis has had a consensus among scientists as the accepted model for gravity perception.
View Article and Find Full Text PDFPhysiol Plant
January 2025
School of Agriculture, Yunnan University, Kunming, Yunnan, China.
Regulating potato tuber dormancy is crucial for crop productivity and food security. We conducted the first comprehensive physiological, transcriptomic, and metabolomic investigations of two varieties of long and short dormant potato tubers in order to clarify the mechanisms of dormancy release. In the current study, three different dormant stages of UGT (ungerminated tubers), MGT (minimally germinated tubers), and GT (germinated tubers) were obtained by treatment with the germination promoter gibberellin A and the germination inhibitor chlorpropham.
View Article and Find Full Text PDFNatl Sci Rev
February 2025
State Key Laboratory of Rice Biology and Breeding, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China.
Excessive temperatures during grain filling can compromise endosperm starch biosynthesis and decrease grain quality and yield in rice. However, the molecular mechanisms underlying these remain unclear. Here, we show that heat shock protein OsHsp40-1 interacts with and elevates the ATPase activity of OsHsp70-2 in rice.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
Department of Drug Sciences, University of Pavia, Pavia, 27100, Italy.
Purpose: The main purpose of the study was the formulation development of nanogels (NHs) composed of chondroitin sulfate (CS) and low molecular weight chitosan (lCH), loaded with a naringenin-β-cyclodextrin complex (NAR/β-CD), as a potential treatment for early-stage diabetic retinopathy.
Methods: Different formulations of NHs were prepared by varying polymer concentration, lCH ratio, and pH and, then, characterized for particle size, zeta potential, particle concentration (particles/mL) and morphology. Cytotoxicity and internalization were assessed in vitro using Human Umbilical Vein Endothelial Cells (HUVEC).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!